Сравнение атомно-силовой и сканирующей электронной микроскопии нанопор на поверхности травимых кристаллов оливина, облученных быстрыми тяжёлыми ионами

54-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами, 2025

2) Травление

При использовании кристаллического образца с анизотропией травления можно получить полигональные поры

2. АСМ и СЭМ методы

Атомно-силовой микроскоп

микроскоп

Микроскоп AISN-NT Smart SP 1000 Радиус кривизны наконечника кантилевера 20нм

электронный микроскоп

Микроскоп Tescan Vega 3. Напряжение 20кВ Напылён слой 5нм на поверхность образца

[100]

[010]

Принцип работы атомно-силового микроскопа – перемещение заострённой иглы по поверхности образца.

Характерный размер острия сравним с диаметром нанопоры – могут быть искажения

Сканирующий электронный микроскоп

Фокусированный электронный луч перемещается по поверхности образца. По отражённому пучку определяется форма поверхности.

Однако, диэлектрическая мишень накапливает заряд – сканирование невозможно. Для исследования наносят токопроводящий слой, как правило напыляют платину.

Наноразмерный слой платины тоже может создавать искажения формы нанопор

Заключение

•Травление оливина, облученного быстрыми тяжёлыми ионами, может использоваться для синтеза нанопор с некруговым поперечным сечением

• Формой пор можно управлять, изменяя направление кристаллических осей оливина относительно налетающих ионов.

• Наблюдаемые размеры и визуальная форма синтезируемых нанопор могут зависеть от применяемого метода микроскопии. При этом, между АСМ и СЭМ нет однозначного соответствия в сторону увеличения и уменьшения размеров.

Размеры наблюдаемых нанопор могут зависеть от применяемого метода микроскопии

Литература

[1] S A Gorbunov et. al, 2017, J. Phys. D: Appl. Phys. 50 395306

[2] S.A. Gorbunov, et. al, Radiation Physics and Chemistry 232 (2025) 112675