54-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами

ЭВОЛЮЦИЯ МОРФОЛОГИИ СТЕКЛА К-208 ПРИ ЭЛЕКТРОННО-ПРОТОННОМ ОБЛУЧЕНИИ Р.Х. Хасаншин ^{1,2}, С.П. Никитин ¹, И.С. Кузнецов ², Л.С. Новиков ³

¹ АО "Композит" г. Королев Московской обл., ² МГТУ им. Н.Э. Баумана, г. Москва,

³ НИИЯФ МГУ им. М.В. Ломоносова г. Москва.

Введение	Методика эксперимента	Стенд УВ-1/2
Материалы внешних поверхностей искусственных спутников Земли (ИСЗ) взаимодействуют с горячей магнитосферной плазмой (ГМП) [1-3], которая состоит в основном из электронов и протонов. Результаты исследований взаимодействия отдельных компонент ГМП с диэлектрическими материалами могут дать полезную информацию о процессах, протекающих при воздействии на них ГМП. Эта информация необходима для прогнозирования возможных негативных явлений при использовании исследованных материалов на высокоорбитальных ИСЗ. Так воздействие ГМП на стекло может привести к возникновению электростатических разрядов, изменению его микроструктуры, морфологии поверхности, стехиометрии, к деградации оптических свойств и т.д. [4-7] В работе проведен сравнительный анализ радиационных эффектов, вызванных воздействием на защитное покрытие солнечных батарей	 В экспериментах образец – пластину стекла К-208 размером 30×30×0,16 мм, прикрепляли к предметному столику. Одновременное облучение всей поверхности образца проводилось в вакуумной камере испытательного стенда УВ-1/2 (АО «Композит») при следующих условиях: вакуум – 10⁻⁴ Па; энергия электронов <i>E</i>_e – 20 и 40 кэВ, а протонов <i>E</i>_p – 20 кэВ; плотности потоков электронов <i>φ</i>_e и протонов <i>φ</i>_p составляли от 5×10⁸ до 5×10¹¹ см⁻²с⁻¹; флюенс электронов <i>Φ</i>_e и протонов <i>Φ</i>_p – 5×10¹⁴ ÷ 5×10¹⁶ см⁻²; температура охлаждаемого столика – 20 ± 1°C Поверхности исходных и облученных образцов исследовались с помощью атомно-силового микроскопа (АСМ) Solver P47–Multi–Technique SPMT. Для изучения топологии поверхности образцов использовалась полуконтактная атомно-силовая мода, которая при 	4 11 1 1 <td< td=""></td<>
морфологии поверхности, стехиометрии, к деградации оптических свойств и т.д. [4-7] В работе проведен сравнительный анализ радиационных эффектов, вызванных воздействием на защитное покрытие солнечных батарей ИСЗ как отлольных компонент ГМП, так и их совокильности. Пля	Поверхности исходных и облученных образцов исследовались с помощью атомно-силового микроскопа (ACM) Solver P47–Multi– Technique SPMT. Для изучения топологии поверхности образцов использовалась полуконтактная атомно-силовая мода, которая при высокой точности измерений не разрушает поверхность. По периметру	Рис. 1. Схема автоматизированного стенда УВ-1 1 – вакуумная камера; 2 – рабочий и измерительный столик; 4 – система вакуумной откачки и контроля вакуума; 5 – блок

достижения этой цели пластины стекла К-208 - защитные покрытия солнечных батарей, подвергнуты раздельному и совместному воздействию электронов и протонов с энергиями, характерными для ΓΜΠ.

образца на высоте 5 мм размещалась медная антенна диаметром 2 мм. Ток, наведенный на антенне, при ЭСР или пробое на металлическую подложку замыкался на корпус через измерительный резистор. Напряжение на резисторе фиксировалось с помощью двухлучевого осциллографа RIGOL MSO2302A.

– блок имитаторов космического пространства; 7 – электронный ускоритель; 8 – протонный ускоритель; 9 – имитатор концентрированного солнечного излучения; 10 – формирующее оптическое устройство; 11 – блок управления имитатором солнечного излучения; 12 – блок управления ускорителями; 13 – образец.

Результаты экспериментов

и "3-4" (2) ($\varphi_{e} = 7.5 \times 10^{10}, \ \varphi_{p} = 5.0 \times 10^{10} \text{ см}^{-2} \text{c}^{-1};$ $\Phi_{\rm e} = 2.1 \times 10^{15}, \Phi_{\rm p} = 1.4 \times 10^{15} \, {\rm cm}^{-2}$

Рис.8.: *а, б, в* - кадры 20×20; 10×10; 5×5 мкм; *г* – сечения кадра *в* вдоль линий "1-2"(1) и "3-4"(2) $(\varphi_{e} = 11.2 \times 10^{10} \text{ cm}^{-2} \text{c}^{-1}; \varphi_{p} = 5.6 \times 10^{10} \text{ cm}^{-2} \text{c}^{-1}; \Phi_{e} = 2.4 \times 10^{15} \text{ cm}^{-2}; \Phi_{p} = 1.2 \times 10^{15} \text{ cm}^{-2})$

Рис. 9.: а - кадр 5×5 мкм, б - сечения вдоль линии "1-2" (1) и "3-4" (2) ($\Phi_{e} = 2.4 \times 10^{15} \text{ см}^{-2}$; $\Phi_{p} = 6 \times 10^{14} \text{ см}^{-2}$)

Рис. 10.: а - $E_e = E_p = 20$ кэВ; б - $E_e = 40$ кэВ, $E_{\rm p} = 20$ кэВ.

Выводы

Литература

Показано, что при облучение электронами и протонами с $E_{\rm e} = 20, 40$ кэВ и $E_{\rm p} = 20$ кэВ при значениях $\varphi_{\rm e}$ и $\varphi_{\rm p} > 5 \times 10^9$ см⁻²с⁻ ¹; $\Phi_{\rm e}$ и $\Phi_{\rm p} > 1.2 \times 10^{15}$ см⁻² в приповерхностном слое пластин стекла К-208 образуются пузырьки, заполненные молекулами О₂ в первом случае и H₂ во втором. При электронно-протонном облучении пластин флюенсами $\Phi_{\rm e}$ и $\Phi_{\rm p} > 1.2 \times 10^{15}$ см⁻², когда $\varphi_{\rm p}$ / $\phi_{\rm e} > 1.3$ в экспериментах наблюдалось образование пузырьков H₂, а при $\varphi_{\rm p}$ / $\varphi_{\rm e}$ < 2/3 в облучаемом слое стекла появляются пузырьки с молекулами О2. Необходимо отметить, что с увеличением значений флюенсов размеры газонаполненных пузырьков возрастают, а облучение при $\varphi_{\rm e} = 1.12 \times 10^{11} \, {\rm cm}^{-2-}{\rm c}^{-1};$ $\varphi_{\rm p} = 5.6 \times 10^{10} \text{ см}^{-2} \text{c}^{-1}$ до $\Phi_{\rm e} = 2.4 \times 10^{15} \text{ см}^{-2}$ и $\Phi_{\rm p} = 1.2 \times 10^{15} \text{ см}^{-2}$ привело к разрушению части пузырьков.

Образование пузырьков О₂ при электронном облучении стекла обусловлено следующими процессами: формированием в стекле области отрицательного объемного заряда; полевой миграцией ионов натрия, играющей ключевую роль в освобождении немостиковых атомов кислорода; миграцией и агрегацией атомов кислорода в дефектных местах сетки стекла. На изменение морфологии поверхности стекла при электроннопротонном облучении помимо образования пузырьков влияют электростатические разряды. Так разряды, развивающиеся вдоль облучаемой поверхности стекла и возникающие в случае электронного облучения в вакууме 10⁻⁴ Па, когда значении $\phi_{\rm e} >$ 7.5×10¹⁰ см⁻² с⁻¹. В экспериментах наблюдались также и пробои на металлическую подложку.

[1]. Ferguson D.C., Wimberly S.C., Proceed. 50th AIAA Aerospace Sci. Mtg. (2013) AIAA 2013-0810. [2]. Модель космоса. Научно-информ. издание / под ред. Л.С. Новикова. Т.2. М. КДУ, 2007, 1144 с. [3]. Frakhfakh S., Jbara O., Belhaj M., et al. // J. Appl. Phys. 2008. V.104. 093704. [4]. Kazuhiro Toyoda, Teppei Okumura, Satoshi Hosoda, *Mengu Cho* // J. of Spac. and Roc., 42, (2005) 947. [5]. Guerch K., \Paulmier T., Guillemet-Fritsch S., Lenormand P. // Nucl. Instr. Meth. B. 2015. V. 349. P. 147. [6].*Miyake H., Tanaka Y., Takada T., Liu R.//* IEEE Trans.on Dielec. and Elect. Insul. 2007. V. 14. No. 2. P. 520.

[7]. *Khasanshin R.H., Novikov L.S.* // Adv. in Space Res. 2016. V. 57. P. 2187.