

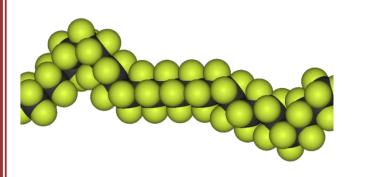
ИЗМЕНЕНИЕ СТРУКТУРЫ И СВОЙСТВ ФТОРУГЛЕРОДНЫХ ПОКРЫТИЙ ПРИ ОБЛУЧЕНИИ УСКОРЕННЫМИ ИОНАМИ С60

В.Е. Пуха ^{1*}, Г.В. Нечаев¹, Е.Н. Кабачков ^{1,2}, Лукина И.Н.³, Дроздова Е.И.³, Черногорова О.П.³

¹ ФИЦ ПХФ и МХ РАН, Черноголовка Россия

² ИФТТ РАН Черноголовка, Россия

³ ИМЕТ РАН, Москва, Россия


*) e-mail: pve@icp.ac.ru

Фторсодержащие покрытия формировались облучением ионами C_{60}^+ с энергией 5 кэВ растущей пленки фторопласта. Показано, что облучение ионами C_{60}^+ позволяет получить высокий контактный угол смачивания фторуглеродных покрытий при приемлемых для трибологического применения механических свойствах.

Материалы

Политетрафторэтилен фторопла́ст-4 Фторопласт марки «Флуралит» ($-C_2F_4$ -)n, с размером частиц 0,2 до 5 микрон. (ООО Флуралит синтез, Россия).

Разложения фторопла́ст-4 температура 415°C Флуралит – начало испарения 140°C

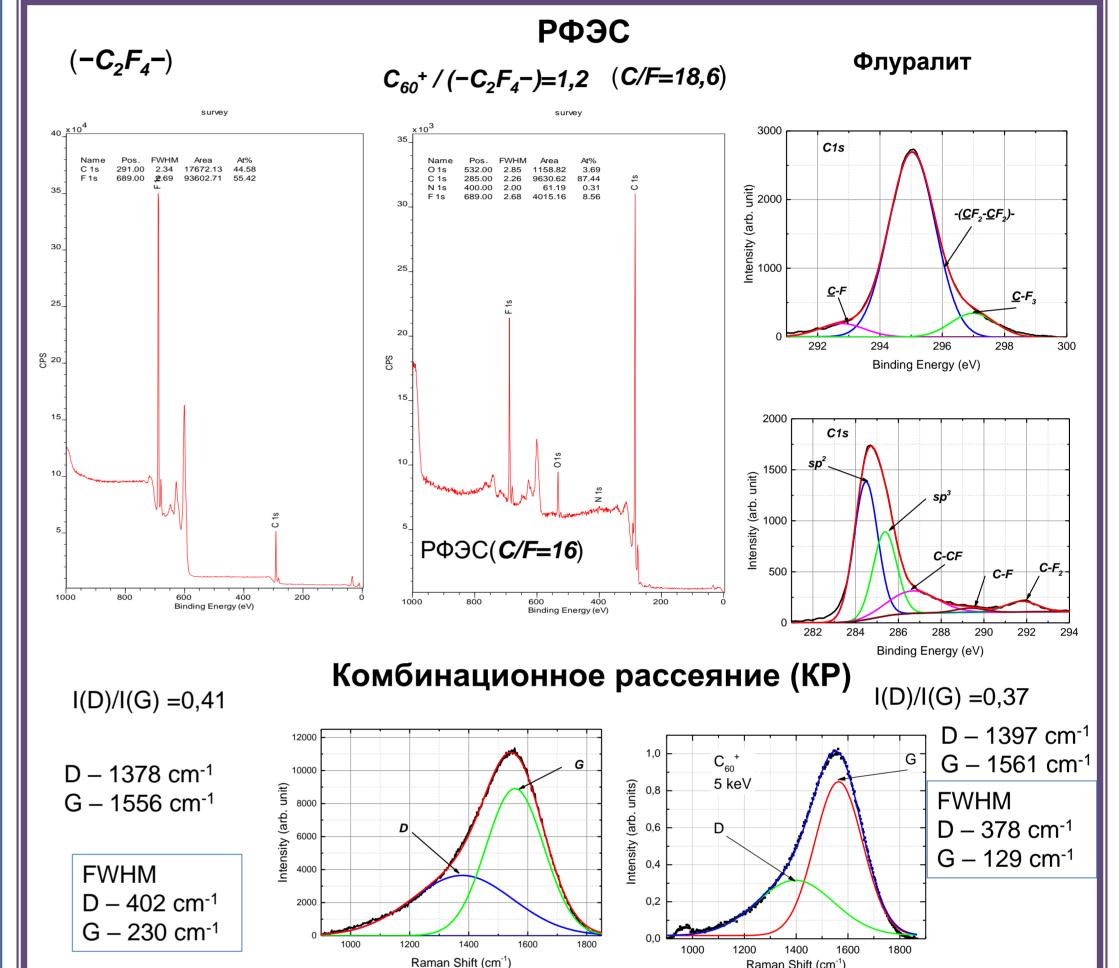
Эксперимент

□ Облучения ионами С₆₀+ с энергией 5 кэВ растущей пленки фторопласта, которая осаждалась при испарении фторопласта марки «Флуралит» (ООО Флуралит синтез, Россия) из эффузионной ячейки

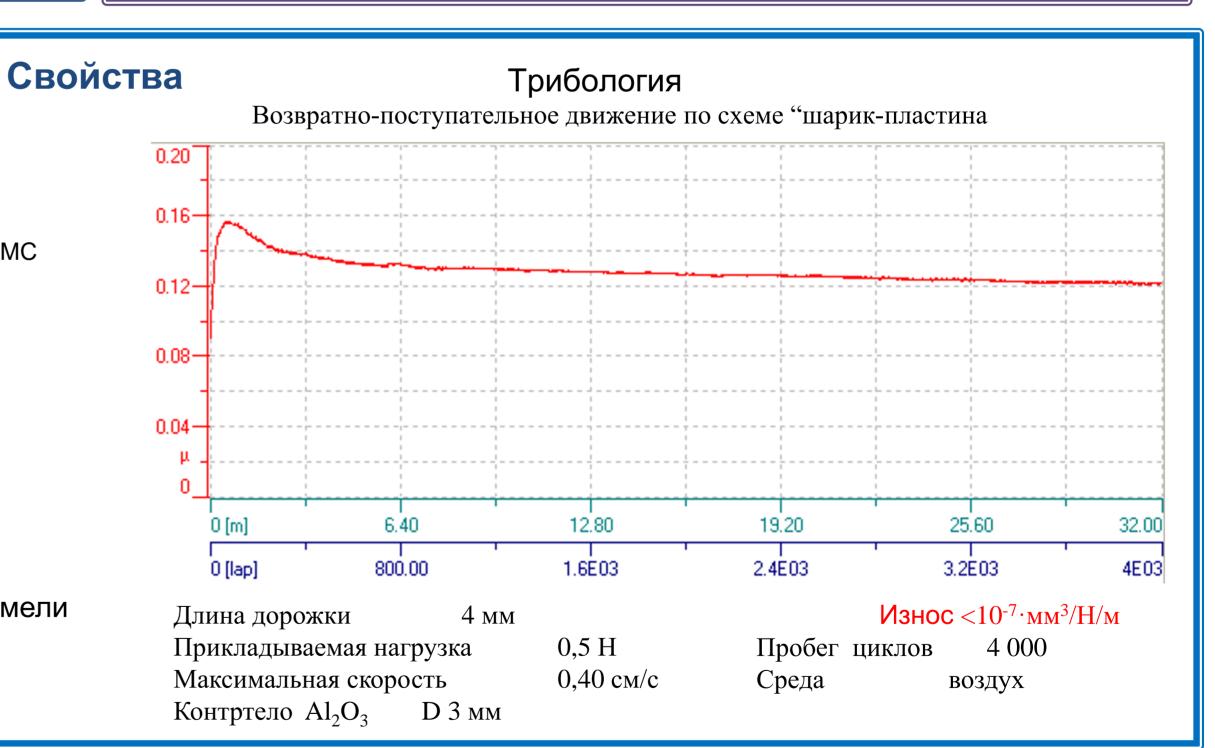
Фуллерен С₆₀

Пары C_{60} из двух эффузионных ячеек подавали через отверстия в аноде непосредственно в седловидную область электрического поля.

Термопара Шторка зонд Подложка Магнит Кварцевые спектрометра микровесы Эффузионные Ионные ЯЧЕЙКИ ПЦЧКИ Вакуумная Ионный камера *ИСТОЧНИК* Подложки Отражатель Термопара Откачка 5·10⁻⁵ Па


В парах зажигался разряд, из него формировался ионный пучок который через масс-спектрометр направлялся на подложку

Флуралит


Испарение из эффузионной ячейки. Контроль скорости испарения кварцевые микровесы.

Соотношение C_{60}^+ / $(-C_2F_4-)$ — ионный ток (C_{60}^+) и частота кварца $(-C_2F_4-)$. Калибровка кварца $(-C_2F_4-)$ на Si. Толщина по ступеньке (ACM). Начало испарения при Ts ~140°C. Неизменный ток ионов C_{60}^+ (3 мкA).

Покрытия исследовалась методами РФЭС, ПЭМ и КР. Механические свойства - индентированием.

Контактный угол смачивания $C_{60}^{+}/(-C_2F_4^{-})=1,2$ (покрытие) $C_{60}^{+}/(-C_2F_4^{-})=1,2$ $C_{60}^{-}/(-C_2F_4^{-})=1,2$ $C_{60}^{-}/(-C_2F_4^{$

Заключение

- 1. Фторсодержащие покрытия сформированы при облучения ионами C_{60} + с энергией 5 кэВ растущей пленки фторопласта и содержат ~8 ат.% фтора.
- 2. В покрытиях обнаружено относительно высокое содержание sp^3 связей ($sp^3/sp^2 \sim 0,64$), что обеспечивает высокие механические свойства (твердость H=32 ГПа и модуль Юнга E= 210 ГПа.
- 3. Измерение характеристик смачивания показало, что контактные углы (C.A.) сформированных из ионов C_{60} C.A. ~90°, а для фторопластовой пленки, облученной ионами C_{60} (8 ат. % фтора) C.A. ~98°. Необлученное фторопластовое покрытие имело контактный угол 144°.
- 4. Трибологические испытания показали низкий износ покрытий ($< 10^{-7} \cdot \text{мм}^3/\text{H/м}$) при коэффициенте трения близком к 0,15.