

Об особенностях формирования полярного распределения распыленных атомов в МДмодели распыления грани (001) Ni

<u>А.И. Мусин^{1,2)}, В.Н. Самойлов³⁾</u>

¹⁾ Московский государственный технологический университет «СТАНКИН», Москва ²⁾ Государственный университет просвещения, Московская область ³⁾ МГУ им. М.В. Ломоносова, Москва e-mail: <u>ai.musin@physics.msu.ru</u>

Исследовано распыление грани (001) Ni ионами Ar с энергией 200 эВ с разрешением по углам и энергии. Расчеты проведены по молекулярно-динамической модели [1], которая позволяет задавать произвольную температуру мишени. Ранее данная модель успешно применялась для расчетов смещений атомов и каскадного перемешивания. В настоящей работе модель была модифицирована для рассмотрения распределений распыленных атомов с одновременным разрешением по энергии *E*, полярному θ и азимутальному ϕ углам. Было рассчитано падение ~10⁶ ионов. Для распыленных атомов регистрировались параметры *E*, θ и ϕ не только на большом удалении от поверхности (10 Å), но и E_0 , θ_0 и ϕ_0 на высоте 0.3 Å над усредненной поверхностью кристалла.

На рис. 1 показано двумерное распределение распыленных атомов для несимметричного относительно центра линзы

На рис. 2 показано распределение распыленных атомов, наблюдаемых в том же интервале азимутальных углов $87^{\circ} \pm 1.5^{\circ}$, по $1 - \cos \theta$ для энергий E (2.5 ± 0.1) эВ. Здесь хребтам I, II и III соответствуют одноименные максимумы, окрестности которых для удобства обозначены пунктирными линиями. Окрестности максимумов задаются интервалами полярного угла θ : I — [51.7° ; 58.0°], II — [60.7° ; 67.7°], III — [70.1° ; 75.5°].

Рис. 1. Распределение распыленных атомов по энергии E и 1 – соз θ , наблюдаемых в интервале азимутальных углов φ [85.5°; 88.5°]. Два нижних хребта образованы в основном

интервала азимутального угла наблюдения $87^{\circ} \pm 1.5^{\circ}$. В распределении видны отдельные хребты, которые возникают из-за различных механизмов фокусировки в процессе вылета с поверхности. При энергиях *E* от 1.5 до 3.5 эВ наблюдается три хребта (обозначим их I, II и III в порядке сверху вниз), нижний хребет (III) примерно при 3.5 эВ обрывается, остальные два сходятся в центральной области распределения. При энергиях от 9 до 40 эВ также наблюдается отдельный хребет (IV). Хребты II и III образованы перефокусированными атомами, хребты I и IV — собственными и фокусированными атомами.

Таким образом, в экспериментах по распылению грани (001) Ni с высоким угловым и энергетическим разрешением при низких температурах можно ожидать наличие тонкой структуры в распределениях распыленных атомов для несимметричных относительно направления (010) интервалов азимутального угла.

Атомы, образующие максимум III, в основном являются перефокусированными с начальными азимутальными углами 95° – 100°. Эти атомы вылетают под углами θ_0 ближе к нормали, чем атомы предыдущих групп, поэтому взаимодействие с соседними

атомами не такое сильное, из-за чего разворот траектории по азимутальному углу составляет только $8^{\circ} - 13^{\circ}$. За счет притяжения к поверхности полярный угол увеличивается ($\theta > \theta_0$). Поскольку сильная блокировка отсутствует, потери энергии здесь меньше из-за более слабого взаимодействия с атомами линзы.

Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова [2].

Рис. 2. Распределение распыленных атомов по $1 - \cos \theta$, наблюдаемых в интервале азимутальных углов φ [85.5°; 88.5°] с энергией E (2.5 ± 0.1) эВ

G.V. Kornich, G. Betz. *Nucl. Instr. Meth. Phys. Res. B.* 143 (1998) 455.
VI. Voevodin et al. *Supercomp. Front. and Innov.* 6 (2019) 4.

LIII Международная Тулиновская конференция по физике взаимодействия заряженных частиц с кристаллами (ФВЗЧК-2024), Москва, Россия