

КАНАЛИРОВАНИЕ РЕЛЯТИВИСТСКИХ ИОНОВ В ПОЛУВОЛНОВЫХ КРИСТАЛЛАХ

О.В. Богданов¹⁾, <u>Т.А. Тухфатуллин^{2,*)}</u>

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

¹⁾Томский политехнический университет, Томск, Россия ²⁾Алматинский филиал НИЯУ МИФИ, Алматы, Казахстан ^{*)}tta@tpu.ru

Введение

- В полуволновом кристалле частица в условиях каналирования совершает половину колебания при движении вдоль плоскостей каналирования.
- При каналировании в таких кристаллах наблюдается эффект «зеркального отражения».
- Данный эффект экспериментально наблюдался для протонов с энергией 400 ГэВ в CERN-SPS [1] и для электронов с энергией 255 МэВ на ускорителе SAGA-LS [2, 3].
- По сравнению с протонами и электронами в случае релятивистских тяжелых ионов (RHI) появляются два дополнительных параметра: заряд иона Ze и массовое число A. Компьютерное моделирование каналирования изотопов с низким Z в полуволновом кристалле выявило изотопический эффект [4].
- работе [5] были представлены результаты компьютерного моделирования каналирования RHI с большими Z (¹²⁹Xe, ²⁰⁸Pb, ²³⁸U) в кристаллах Si, Ge и W.
- В работе [6] была рассмотрена система из N веерно-расположенных полуволновых кристаллов, которая позволяет получить угол отклонения пучка ионов равный N критическим углам каналирования.
- Там же было показано, что эффективность отклонения пучка не зависит от энергии и вида ионов, и от типа кристалла, а зависит только от угловой расходимости ионного пучка.

Цель данной работы – провести моделирование угловых распределений релятивистских ионов в веерно-расположенных полуволновых кристаллах с учетом углового разброса вследствие эффекта многократного рассеяния ионов.

Результаты расчетов без учета многократного рассеяния

Модель

В приближении каналирования уравнения движения релятивистских ионов в периодическим потенциале кристаллической решетки U(x) имеют следующий вид

$$\gamma M \ddot{x} = F_x = -Z \frac{\partial U(x)}{\partial x},$$
$$\gamma M \ddot{z} = 0.$$

M – масса иона, Z –зарядовое число иона, γ – Лоренц фактор, F_x – сила, действующая на ион в периодическом поле кристалла.

Начальные условия:

точка влета в кристалл $x(t = 0) = x_0$ начальная скорость $v_x(t=0) = v \sin \theta$

Учет угловой расходимости: для каждой точки влета x₀ с помощью датчика случайных чисел выбирается несколько углов падения θ с заданной угловой расходимостью $\Delta \theta$.

Период колебаний, длина полуволны, критический угол каналирования:

<u> </u>	$2ZU_0$		γΜ	λ_	$v_z T$	βc	γΜ	πd_p
$v_{\rm c} - \sqrt{1}$	$\beta^2 E$	$I = \pi a_p$	$\overline{2ZU_0}$	2	2	$\frac{1}{2}na_p$	$2ZU_0$	$2\theta_c$

 U_0 – глубина потенциальной ямы, $E = \gamma M c^2$ – полная энергия иона, $\beta = \frac{v}{c} (c - c \kappa o \rho o c \tau b)$ света).

Crystal		Plane		dp. Å		<i>V</i> 0, eV			
Si		(220)		1.92		21.1			
7	W		(200)		1.58		80.2		
$E_k = 300 \text{ MeV/u}$				<i>E_k</i> =1.75 MeV/u					
	$^{1}\mathrm{H}$	6Li	¹³² Xe		$^{1}\mathrm{H}$	6Li	¹³² Xe		
A/Z	1	2	2.44	A/Z	1	2	2.44		
	θ_{ms} (mrad)				θ_{ms} (mrad)				
Si	0.049	0.036	0.026	Si	1.770	1.288	0.931		
W	0.193	0.139	0.100	W	7.126	5.147	3.697		
	$\theta_c (\mathrm{mrad})$				$\theta_c \text{ (mrad)}$				
Si	0.283	0.200	0.181	Si	3.478	2.459	2.224		
W	0.551	0.390	0.352	W	6.772	4.789	4.331		
	λ/2 (μm)				λ/2 (μm)				
Si	1.065	1.506	1.665	Si	0.087	0.123	0.136		
W	0.451	0.638	0.705	W	0.037	0.052	0.057		
	$E_{\rm c}~{ m GeV}$				E, GeV				
	1.238	7.403	162.468		0.94002	5.61355	123.09893		
	γ								
	1.31974	1.32125	1.32230		1.00187	1.00187	1.00188		

Результаты расчетов с учетом многократного рассеяния

 $E_k = 300 \text{ MeV/u}$

HWC Si

6Li

Результаты расчетов Типичные траектории ионов ${}^{1}H$, ${}^{6}Li$ and ${}^{132}Xe$ в (220) полуволновом кристалле Si. $E_k = 300 \text{ MeV/u}$

Литература

- Scandale W et al 2014 Phys. Lett. B 734, 1
- Takabayashi Y et al 2015 Phys. Lett. B 751, 453
- Takabayashi Y et al 2015 Nucl. Instr. and Meth. B 355, 188 3.
- Bogdanov O V et al 2020 Phys. Lett. B 802 135265 4.
- Bogdanov O V, Pivovarov Yu L, Tukhfatullin T A 2021 Nucl. Instr. and Meth. B 486 22 5.
- 6. Bogdanov O V, Tukhfatullin T A 2024 Nucl. Instr. and Meth. A 1061 169122

Заключение

- Рассчитаны угловые распределения и траектории релятивистских ионов ¹H, ⁶Li, ¹³²Xe с кинетической энергией 300 и 1,75 МэВ/нуклон, каналированных в системе веерно-ориентированных полуволновых кристаллов Si и W.
- Угловые распределения имеют тонкую структуру при расчетах без учета эффекта многократного рассеяния.
- Эффективность отклонения ионного пучка уменьшается с увеличением числа кристаллов в системе с 86% до 10% (для 2 и 10 кристаллов соответственно).
- Эффективность отклонения ионов системой не зависит от энергии ионов, отношения А/Z ионов, типа кристаллов и зависит только от угловой расходимости ионного пучка при расчетах без учета эффекта многократного рассеяния.
- При моделировании с учетом вклада эффекта многократного рассеяния ионов в объеме кристаллов появляется зависимость от энергии и А/Z ионов.
- Учет углового разброса вследствие эффекта многократного рассеяния приводит к снижению эффективности отклонения пучка на 10-30% в зависимости от энергии ионов.
- Система веерно-ориентированных полуволновых кристаллов может быть использована для отклонения пучка ионов на угол до критического угла каналирования $N\theta_c$, в дополнение к существующим магнитным системам.

53-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами, 28 мая – 30 мая 2024 г. МГУ, Москва

Система из N веерно-

расположенных

полуволновых кристаллов