

Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами 2024

Модификация поверхностных свойств α -Ga₂O₃ облучением ускоренными ионами

Е.Д. Федоренко*, А.И. Клевцов, А.И. Титов, В.Д. Андреева, П.А. Карасев Санкт-Петербургский Политехнический университет Петра Великого, Санкт-Петербург, Россия *e-mail: lizasever69@mail.ru

Оксид галлия – один из многообещающих полупроводниковых материалов для создания нового поколения мощных электронных приборов и УФ оптоэлектроники, поскольку обладает следующими достоинствами: широкая запрещенная зона (4.4 – 5.3 эВ в зависимости от кристаллической фазы), высокие значения напряжения пробоя (~ 8 МВ/см). Облучение ускоренными ионами широко используется в современной полупроводниковой технологии, в частности, при производстве электронных устройств. В работе описаны результаты высокодозного воздействия ионной бомбардировки на структурные и поверхностные свойства в α-Ga₂O₃. Изучено влияние облучения ускоренными атомарными (P, Ta) и молекулярными (PF₄) ионами с дозами от 3 до 45 ДПА на состояние поверхности и структуру α -Ga₂O₃.

	•	•				
PF4 140	0,076	0,152	2,41	4,82	0,59	0,89
Ta 150	0,047	0,094	2,41	4,82	0,37	0,55

максимума упругих потерь энергии. Рассчитано TRIM.

После прохождения нескольких ангстрем по глубине от поверхности атомы каскады вблизи двигаться независимо, смещений начинают HO поверхности перекрываются.

от системы плоскостей (0006) и (00012) α-Ga₂O₃. Максимумы вблизи 42,1° и 91,1° соответствуют дифракционным отражениям (0006) и (00012) от подложки сапфира. В районе 38,9° и 83.5° виден небольшой пик, свидетельствующий о наличии вкраплений ε-Ga₂O₃

P: 40 keV, 45 dpa, 4.82*10\+(-3) dpa/s Ga2p_{3/2} peak Ga₂O₃ (1118,4 eV) Ga₂O (1117,4 eV) Ga-Ga (1116 eV) ellite (1119.9 eV 1126 1124 1122 1116 1114 1120 1118 Binding Energy, eV **Ta**: 150 keV, 45 dpa, 4.28*10\+(-3) dpa/s Ga2p_{3/2} peak

Резерфордовское обратное рассеяние

Для невысоких доз (до 4.5 DPA) на спектрах отчетливо видны поверхностный и объемный максимумы дефектов. При увеличении дозы (от 4.5 до 45 DPA) эти два пика сливаются в один. Наблюдается полная аморфизация мишени.

Рисунок 3. Спектры RBS/C от образцов α- Ga₂O₃ в случайном (random) и каналируемом направлениях до (virgin) и после облучения ионами.

Пунктирные линии - распределения генерируемых ионами смещений по глубине

Атомно-силовая и электронная микроскопия

Рисунок 3. СЭМ-изображение скола пленки α -Ga₂O₃

virgin Рисунок 5. 3D ACMизображения границы облученной и необлученной областей поверхности оксида галлия

При увеличении дозы легких и 45 DPA тяжелых ионов ДО проявляется небольшая ступенька: поверхность облученной области выше, чем была до облучения. ступеньки Высота в среднем составляет 5 нм. DPA Вплоть ДО 45 ДОЗЫ среднеквадратичная шероховатость поверхности менялась не существенно (от 0,7 до 0,5 нм) независимо от типа и потеря Сглаживание ИОНОВ. детальности заметны лишь для мелкомасштабного рельефа.

Рис. 2. РФЭС пики Ga2p3/2 от исходной области и облученных ионами P, PF4 и Ta с дозой 45 DPA

Наблюдаемое при бомбардировке разрушение кристаллической структуры и образование разупорядоченного слоя сопровождается появлением в мишени оксида галлия новых степеней окисления: степень Ga¹⁺ может частично переходить в Ga³⁺, с образованием Ga⁰

Рисунок 4. АСМ-изображения поверхности оксида галлия до и после облучения с дозой 6,9 DPA и после облучения ионами P, PF₄ с дозами 30 и 45 DPA

Выводы

- Высокодозное облучение приводит к полной аморфизации приповерхностного слоя мишени Ga2O3. Ο
- Облучение ионами вплоть до дозы 30 DPA не вызвало заметного изменения толщины образца. При дозах в диапазоне от 30 до 45 DPA наблюдается небольшой свеллинг. Среднеквадратичная шероховатость незначительно снижается (от 0,7 до 0,5 нм).
- При больших дозах атомарные ионы Р и Та формируют более толстый аморфный слой и вызывают более сильный свеллинг, чем 0 молекулярные ионы PF₄.
- Бомбардировка атомарными и молекулярными ионами приводит к изменению степени окисления вплоть до нуля.