Трёхмерное моделирование импульсного лазерного нагрева монокристалла кремния

<u>Р.И. Баталов</u>, Р.Ф. Камалов (КФТИ ФИЦ КазНЦ РАН, Казань)

E-mail: batalov@kfti.knc.ru

Аннотация.

Моделирование импульсного лазерного нагрева кристаллов Si проводилось еще с 70-х годов. При этом решалось одномерное уравнение теплопроводности с распространением тепла вглубь материала аналитически или методом конечных разностей. С развитием вычислительных ресурсов стало возможным трёхмерное моделирование нагрева. Удобным пакетом для моделирования таких процессов является Comsol Multiphysics. В данной работе проводилось трехмерное моделирование нагрева круглой Si пластины диаметром 10 мм при воздействии лазерных импульсов (10 нс) с длинами волн 355 и 532 нм с диаметром пучка 4 мм. Временная форма импульса и распределение энергии по сечению пучка задавались Гауссовыми. Получены данные по распределению температуры по времени и по поверхности и объему кристалла Si в зависимости от величины плотности энергии импульса (W).

Рис. 2. Схематическое изображение вычислительной сетки по объему Si. Размер сетки по поверхности воздействия лазерного луча на Si одинаковый, по глубине Si размер сетки уменьшается при приближении к поверхности.

Equation
Equation form:
Study controlled
Show equation assuming:
Study 1, Time Dependent

 $\mathbf{q} = -k\nabla T$

фазах

Рис. 3. Общее время расчета складывается из лазерного импульса Гауссовой формы (10нс) и времени остывания и равно 100 нс.

 $\rho C_{\rho} \frac{\partial T}{\partial t} + \rho C_{\rho} \mathbf{u} \cdot \nabla T + \nabla \cdot \mathbf{q} = Q + Q_{\text{ted}}$

Фазовый переход – твердое тело-расплав (уравнение Хевисайда)

Рис.7. Нагрев сектора Si-пластины (R=5мм) зелёным лазером (2-я гарм., λ=532нм, τ=10нс, W=1.6 Дж/см²) с радиусом пучка 2мм. Результаты расчётов

Уравнение теплопроводности в твердой и жидкой

гис.э. Распределение температуры по глубине Si в различные моменты времени (1.2 Дж/см²).

Рис.8. Распределение температуры по глубине Si в различные моменты времени (1.6 Дж/см²).

**	Personalism	Viller	Depression
Im	1687(8)	1687 K	Lawrencempa deara misere Si / Medires temperature
TV.	3588/KI	1538K	Telateostutia armanewa Si / Vancologium temperature
i.m	50.211k1/moli/bly	17877F6 Miles	Variation sentence companying C (Latent heat of multime
te.	3830k0/mol0/Ma	11637E7 Vio.	Yoeshoo renorm accordence Si / Latent heat of evaporation
Me	28.036(a/mol)	0.028566 kg/mol	Macta statety was 5 / Mast of sector molecule
D beau	dimmi	0.034 m	Beavern maa aatena / Laser beam diameter
R beam	D Deam/2	0.002 m	Papers Area recepter / Radius beam chamater
P state	10(m)	1E-8.5	Buttenneccia viativneca asseguence o esazuenza / Pulse width
Elore	0.863/cm^25	8000 3/m*	Decreates assessorie assessorie estimatione / Energy density of later
lainbde	assional	3.55F-7 m	Areas notes sancteous someren / Leng wavelength
aroha s	teS(t/cm)	1E7 1/m	Козафенциент постораниия твердого Si для соотретствующай дляны ролны / Absorption coefficient s.
alpha.I	0.7e6[U/cm]	7E7 12m	Козффициент постощения жидкого SI для состаетствнощей длины волны
R abs s	0.575	0.575	Конфекциент отражения такраото 5 для соответствиящей длины колны
R.ats.J	0.72	57.0	Козффициент отражения жидкого\$ для соответствиощей дляны волны
E.pickoo	E.jouron(pi/4*D_beam*2)	0.10053.7	Bilepres wernstace / Pulse energy
P watt	E.pulse/F.pulse	1.0053E7 W	Mouseopts awayness anepeoro volveevan / Power of the later pulse
P_licen	P_watt/(pl/4*D_beam*2)	8E11-W/m ²	Racmochi wounochi wwnyraca Attepnoro voływeniek / Laser pulse power density
epcier_s	0.7	6.7	Ecolophisurem staryument cratepacro Si a cepyeaccepto contry / Emissivity from Si to the ambient
epsilon)	0.27	0.27	Козффициент излучения жидкого S в окружающаю сред
111	10[W/(m*29K]]	10 W/(m ⁴ -K)	Kosédesureur remacingatur or Sile copycanisages cpagy / literi transfer coefficient from Si to the ambient
T_a	293.15[K]	293.15 K	Tewnepatypa oxpywarowek opeaw / Amblent temperature
T_56	292.15(K)	200, 15 K	Havasawaa teanepanypa Si / Initial temperatura
Ht:	0.35(mm)	3.56-4 m	Buicota normalk inconsignment of of nactivi / Height of the total region of interest
H2	5(um)	51-6 m	Burrons exymptowell workepyeaked educative / Height of the inner region of interior
H3	20(mm)	2E-8 m	Висота 3-й исследиеной области
H4	1000)mm[15-6 m	Swoons 4-9 woonspecied officials
W1	10(mm)/2	0.005 m	Elizepiere nominé voorszynivok o5nactiv / Width of the full region of interest
W2	4)mmi/2	0.002 m	Ширина внутрянней вослединиой области / Width of the inner region of interest
W9	4]mm]/2	0.002 m	Ширина 3-й исследуеной области
994	4)mm(/2	0.002 m	Ширина 4-й исследанной области
K3	47[W/0m+K]]	47.W/(m/Q)	Козффициент теплопроводности жидкого Б
Alpha	Z.55e-6[1/K]	2.598-61/8	Клаффициент ментературного раздаржних 3

Рис. 1. Исходные данные для Si и лазера для мат. модели

▼ Equation	
Show equation assuming:	
Study 1, Time Dependent	
-n · q = 0	

Show equation assuming:	
Study 1, Time Dependent	
$-\mathbf{n} \cdot \mathbf{q} = \underline{q}_0$	

 $q_0 = h(T_{ext} - T)$

Тепловой поток с поверхности и боковых граней Si

* Equation	
Show equation assuming:	
Study 1, Time Dependent	
$-\mathbf{n} \cdot \mathbf{q} = \varepsilon \sigma \left(\tau_{\text{amb}}^4 \cdot \tau^4 \right)$	

Тепловое излучение с поверхности и боковых граней

Интенсивность излучения лазера

Рис.9. Распределение температуры на поверхности Si по времени при разных значениях плотности энергии: (а) λ=355нм и (б) λ=532 нм.