Формы нанопор, синтезируемых при травлении треков быстрых тяжёлых ионов, в зависимости от кристаллической ориентировки образцов

53-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами, 2024

<u>С.А. Горбунов^{1,*}, П.А. Бабаев¹, А.Е. Волков^{1,2}, Р.А. Воронков¹, М.В. Горшенков³, Р. А. Рымжанов⁴, Г.В. Калинина¹</u>

2) Травление

Как правило, используются изотропные материалы => поры круглые

3. Модель травления [2]

Монте-Карло модель TREKIS [3] возбуждения электронной подсистым материала в треке+Молекулярно-динамическое моделирование структурных изменений [3]

Shaurya Prakash et al, J. Micromech. Microeng. 22 067002 (2012)

N Patterson et al, Nanotechnology 19 235304 (2018)

Адсорбционные и транспортные свойства пор с различным сечением:

Форма сечения пор играет существенную роль

4. Эксперимент а) Образцы оливина б) Полировка в) Облучение были смонтированы в •Алмазная паста (зерно ~1мкм) •Ионы Аи 11.4МэВ/нукл •Коллоидный кремний (зерно ~10нм) эпоксидную таблетку

г) Травление

•WN-раствор: 40г ЭДТА, 1г щавелевая кислота,

д) Повторная шлифовка. Срезаем слой 2мкм, содержащий лунку травления

Структурные изменения решётки Mg₂SiO₄ после пролёта иона Хе с энергией 156МэВ

Автоматический поиск и последовательное удаление поверхностных атомов

На каждом шаге моделирования из поверхностных атомов Mg удаляется атом с наибольшей энергий

Результаты моделирования

1мл ортофосфорная кислота, 100мл вода

Результаты

Сканирующий электронный микроскоп Tescan Vega 3 До повторной шлифовки

После повторной шлифовки

Форма пор зависит от ориентировки кристалла

Форма, размер нанопоры и наличие лунки травления зависят от ориентировки кристалла

Заключение

•Травление оливина, облученного быстрыми тяжёлыми ионами, может использоваться для синтеза нанопор с некруговым поперечным сечением

• Формой пор можно управлять, изменяя направление кристаллических осей оливина относительно налетающих ионов.

• В зависимости от ориентировки кристалла лунки травления может и не быть. После срезания слоя, содержащего лунку травления, поры становятся более однородными.

Литература

[1] S A Gorbunov et. al, 2017, J. Phys. D: Appl. Phys. 50 395306

[2] S.A. Gorbunov, et. al, J. Phys. Chem. C 2023, 127, 10, 5090-5097

[3] N. A. Medvedev, et. al, Journal of Applied Physics 133, 100701 (2023)