<u>53-я Международная</u> <u>Тулиновская конференция</u> <u>по Физике Взаимодействия</u> <u>Заряженных Частиц с</u> <u>Кристаллами</u>

Аналитическая теория отражения ионов низкой и средней энергии атомами поверхности мишени при распылении *А. Н. Пустовит*

Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Московская обл., Россия. E-mail: <u>pustan@iptm.ru</u>

Основной величиной, характеризующей любой процесс распыления, является экспериментальный выход распыления (SY) Y_{exp} , рассчитываемый как отношение количества частиц n, распыленных из мишени, к общему количеству ионов N_t , попадающих на нее.

Доля ионов N_{ref} может варьироваться в зависимости от условий эксперимента (энергия *E* и угол падения β ионов), даже если соблюдаются условия для постоянства N_t . По этой причине постоянство числа ионов $N_t = N_{inv} + N_{ref}$, падающих на мишень, не обеспечивает постоянства N_{inv} при различных значениях *E* и β ионов. Используя это условие для N_t , можно записать:

$$Y_{exp} = \frac{n}{N_t} = \frac{n}{N_{inv} + N_{ref}} = \frac{n}{N_{inv} \left(1 + \frac{N_{ref}}{N_{inv}}\right)} = G \times Y$$
(1)

где введены Y – *теоретический* SY (который учитывает только ионы, участвующие в распылении) и G – поправочный коэффициент (CC) (который определяет долю ионов, участвующих в распылении, к общему количеству ионов, падающих на мишень):

$$Y = \frac{n}{N_{inv}}$$
 $G = \frac{N_{inv}}{N_t}$
 $R_{Ns} = \frac{N_{ref}}{N_t} = 1 - G$
 $R_N = \frac{N_{bs}}{N_t}$

 Цели работы:
 1) поиск аналитического выражения для R_{Ns} ;
 2) анализ влияния на значения R_{Ns} входящих в него параметров;

Рис. 1. Схемы: (a) – рассеяния иона (3) атомом поверхности мишени (2) при β = 0 для первичного пучка; (б) – изменения геометрии ионно-атомной системы при β > 0 для ионного пучка; (в) – поперечного сечение вершины конуса затенения в плоскости *xz* при β > 0. 1 - атом-мишень, 2 - вершина затеняющего конуса, 3 - ион. оси *z* и *z'* перпендикулярны плоскости фигуры для систем *xy* и *x'y'* соответственно.

Рис. 2. Сравнение рассчитанных R_{Ns} (формула (2)) и экспериментальных значений коэффициентов отражения R_N: (a) энергетические зависимости R_{Ns} и R_N для пар Cs⁺ - Мо и Rb⁺ - Мо (сплошные линии - R_{Ns}, фигуры - R_{Ns}[4]); (б) энергетические зависимости R_{Ns} и R_Nдля пары D⁺ - С (сплошная линия – рассчитано, рисунки – экспериментальные данные [5]); (в) угловые зависимости R_{Ns} и R_Nдля пары D⁺ - С при энергии иона D⁺ 100 эВ (сплошная линия – R_{Ns}, фигуры – R_{Ns}, фигуры – R_{Ns}, фигуры – R_N [5]). На рис. 2с красная метка на угловой оси с координатой β = 80,214° соответствует E_{th}(β) = 100 эВ.

Рис. 3. Сравнение расчетных значений энергетических зависимостей коэффициента отражения *R_{Ns}* (формула (2)) и с использованием программ компьютерного моделирования *R_N* [6]: (а) для пары Ar⁺ - C; (б) для пары Ar⁺ - Cu. Красные метки на *E* - осях с координатами 60 эВ (а) и 19,98 эВ (б) соответствуют *E_{th}*(0°) для соответствующих пар.

3) сравнение полученных результатов с экспериментальными и расчетными литературными данными.

$$d' = d \cos \beta \qquad U(r) = Z_1 Z_2 q^2 \frac{k_s}{sa} \left(\frac{a}{r}\right)^s \qquad b_s = \left(\frac{Z_1 Z_2 q^2 k_s}{sa E_0}\right)^1$$

$$X(\alpha) = \rho_{ms} \times \cos\gamma = \rho_{ms} \times \cos(\alpha/2)$$

$$\rho_{ms} = b_s \left[\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{s} \left(\frac{\rho}{b_s}\right)^2} \right] X\left(\frac{\pi}{2}\right) = R = \frac{\sqrt{2}}{4} \left(1 + \sqrt{1 + \frac{4}{s}}\right) \times b_s$$

$$G = \frac{N_{inv}}{N_t} = 1 - \frac{4}{\cos\beta} \left(\frac{R}{d}\right)^2 = 1 - \frac{1}{2\cos\beta} \left(1 + \sqrt{1 + \frac{4}{s}}\right)^2 \left(\frac{Z_1 Z_2 q^2 k_s}{saE_\theta}\right)^{2s} \left(\frac{a}{d}\right)^2$$
$$R = -\frac{1}{1 + \left(1 + \frac{4}{s}\right)^2 \left(Z_1 Z_2 q^2 k_s\right)^{2s} \left(\frac{a}{d}\right)^2}{saE_\theta}$$

(2)

(3)

$$R_{Ns} = \frac{1}{2\cos\beta} \left(\frac{1+\sqrt{1+s}}{\sqrt{1+s}} \right) \left(\frac{1+\sqrt{1+s}}{saE_0} \right) \left(\frac{1}{d} \right)$$
$$E_{th}(\beta) = \frac{E_{th}(0)}{\cos^{3/2}\beta} \longrightarrow \beta_{max} = a\cos\left[\frac{E_{th}(0^\circ)}{E} \right]^{2/s}$$

Таблица. Параметры, используемые в расчетах G и R_{Ns}. $E_{th}(0^\circ)$ (eV) lon Target *d* (nm) S ²D+ 0.143 27.64 1.451 С ⁴He⁺ 0.2492 20.67 2.118 Ni ⁴⁰Ar⁺ С 0.34 60 1.855 Cu 0.2556 19.98 2.732 ⁴⁰Ar⁺ 277 ⁸⁵Rh+ 0 2725 38.6 Mo

TXD	IVIO	0.2725	50.0	2.11
¹³³ Cs ⁺	Мо	0.2725	47.4	2.881

ЗАКЛЮЧЕНИЕ

1. Показано, что в процессе распыления участвуют не все частицы первичного пучка, т.к.. часть ионов отражается атомами поверхности мишени. Эта часть ионов может быть учтена с помощью коэффициента отражения R_{Ns} атомами поверхности мишени.

2. Выполнен расчет R_{Ns} и определена его зависимость от параметров системы ион-мишень (включая энергию и угол падения первичного пучка). Расчеты R_{Ns} могут быть использованы как для случаев $m_2 / m_1 > 1$, так и для случаев $m_2 / m_1 < 1$.

3. Сравнение *E*- и β -зависимостей R_{Ns} с экспериментальными значениями R_N для пар Cs⁺-Mo, Rb⁺-Mo и D⁺-C показало удовлетворительное соответствие даже в случае $m_{2/}m_1 < 1$.

4. Проведено сравнение *E*- и β - зависимостей R_{Ns} с результатами расчетов для компьютерных программ R_N для пар Ar⁺-C и Ar⁺-Cu. Установлено, что результаты расчетов R_{Ns} и R_N редко совпадают друг с другом, особенно в областях $m_2/m_1 < 1$ и близких к пороговым энергиям $E_{th}(\beta)$.

<u>ЛИТЕРАТУРА</u>

[1] J.Lindhard, M. Scharff, H.E. Schiott, Mat. Fys. Medd. Dan. Vid. Setsk. 33(I4), 1 (1968).

[2] A. N. Pustovit, J. Surf. Invest.: X-ray, Synchr Neutr Tech., 15, S204 (2021).
[3] A. N. Pustovit, Tech. Phys. Lett., 49 (1), 28 (2023).

[4] C. Brunne, Z. Physik, **147**, 161 (1957) (in German).

[5] M. Mayer, W. Eckstein, B. M. U. Scherzer, J. Appl. Phys. **77**, 6609 (1995).
[6] G. Al-Malkawi, A.-M. B. Al-Ajlony, K. Al-Shboul, A. Hassanein, Nucl. Eng. Technol., **55**, 1287 (2023).

[7] W. Eckstein, "Computer simulation of ion-solid interactions," Springer-Verlag, Berlin–Heidelberg, (1991) pp 1-296.

Рис. 4. Сравнение расчетных значений угловых зависимостей коэффициента отражения, выполненных с использованием программ компьютерного моделирования *R*_N [6] и в данной работе *R*_{Ns} (формула (2)): (а) для пары Ar⁺ - C; (б) для пары Ar⁺ - Cu. Энергия ионов Ar⁺ равна 1 кэВ. Красные метки на β - осях с координатами $\beta_{max} = 87,24^{\circ}$ (а) и $\beta_{max} = 86,732^{\circ}$ (b) соответствуют *E*_{th}(β) = 1 кэВ для соответствующих пар.

Рис. 5. Угловые зависимости коэффициентов отражения R_{Ns} (формула (2), красная линия), R_N и Y_{exp} для пары He⁺ (1 кэВ) – Ni. Данные для R_N и Y_{exp} (черные и зеленые линии) взяты из [7] (рис. 12.5). Красные отметки на β - оси с координатами β = 87,6° соответствуют $E_{tb}(\beta)$ = 1000 эВ.