

52-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами

Москва. МГУ им М.В.Ломоносова. 30 мая – 1 июня 2023 г

РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОНОВ ОКОЛО ТРЕКА БЫСТРОГО ИОНА В КРЕМНИИ

Н.В. Новиков*, Н.Г. Чеченин, А.А. Широкова

НИИЯФ МГУ

31 мая 2023 г

*e-mail: nvnovikov65@mail.ru

1. 1 Процессы вблизи трека иона

Исследование процессов вблизи трека иона

```
распределение вторичных частиц (eh, дефекты);
размер трека;
```

структурно-фазовые модификации материала.

Актуальность

Моделирование сбоев электроники (eh-пары, < q >)

Материаловедение

распределение дефектов, рельеф, нагрев, аморфизация

Технология (поры в мембранах, детекторы).

1.1 Этапы по времени для процессов вблизи трека

1. Прохождение первичного иона (t < 0.1 пc)

Образование электрон - дырочных пар $S_e(E) > S_n(E)$; Начало атомных каскадов $S_e(E) < S_n(E)$.

2. Релаксация возбуждения (t = 1 - 10 nc)

Теплообмен электронной T_e и ионной T подсистем; Накопление дефектов, аморфизация.

3. Эволюция κ равновесию (t > 100 пс)

Выравнивание температур,

Миграция и рекомбинация части дефектов.

1.2 Теоретические модели

- 1. Линейная передача энергии (ЛПЭ) <q(x)> максимальное количества eh- пар. L(E,Z,A)[МэВ см²/мг] = 0.0431 $S_e(E,Z,A)$ [эВ/А]
- **2.** *Модель термического пика* T(t,r,x) система термодинамических уравнений T_e ,T температуры электронов и ионов; C_e , K удельные теплоемкости материала; C(T), K(T) теплопроводности.
- (3) Экситон квазичастица, возбуждение конденсированного вещества в виде связанного состояния электрона и однозарядного кластера.

1.3 В этой работе исследуется процесс

$$X^{q+}(E) + Si(d) => X^{q+} + Si^{+} + e^{-}(E_e, \theta)$$

24Mg;
$$E=0.1-10$$
 МэВ/нуклон, $d \sim 100$ А, $E_e \leq 5$ кэВ, $\theta=0.180^{\circ}$

Угол падения $\alpha = 0$.

(Одно выделенное направление => аксиальная симметрия)

Щель: Распределение электронов n(x,r,t)

2. Количество электронов

Количество ионизационных столкновений:

$$v(Z,E)/\Delta x = \rho \ \sigma(Z,E)$$
 $\sigma>> \sigma_{2e}$ $\sigma(Z,E) = q^2(Z,E) \ \sigma(Z=1,E), \ q$ - заряд иона

ЛПЭ приближение:

Для быстрых ионов $(S_e(E) > S_n(E))$

$$S_{e}(Z,E) = \rho \sum_{i} \sigma_{j}(Z,E) \ \overline{E_{j}} \implies S_{e}(Z,E) \approx \rho \ \sigma(Z,E) \left[\varepsilon_{0} + \overline{E_{e}} \right]$$
$$\overline{E_{e}} \rightarrow 0 \implies v_{\max}(Z,E) / \Delta x = S_{e}(Z,E) / \varepsilon_{0}$$

 S_e [9B/A], Δx [A], $\epsilon 0 = 3.6$ 9B, $\rho = 5 \times 10^{22}$ at/cm³

2. Количество электронов

Рис.1 Сечения ионизации атома кремния и количество электронов

 $\sigma(E_{\text{max}})$, $S_e(E_{\text{max}})$: p-Si E_{max} =55 кэВ; ²⁴Mg-Si E_{max} =570 кэВ/нук 7/20

3. Сечение однократной ионизации

SC(soft collision); TCEE(two-center electron emission); ECC(electron capture to continuum); BE(binary-ecounter collisions)

3. Распределение электронов по углу и энергии

Рис.3

$$p + H \Rightarrow p + H^{+} + e^{-}(E_{e}, \theta)$$

 $E = 5 \text{ M} \Rightarrow \text{B}$

N.Stolterfoht, R.D.Dubois, R.D. Rivarola. "Electron emission in heavy ion-atom collision". Springer, 1997, 250p.

Борновское приближение ВЕ пик $E_{\rho} > 0.5$ кэВ

$$t_{B1}(\vec{Q}, \vec{k}_e) \propto 1 / \left[\beta^2 + \left| \vec{Q} - \vec{k}_e \right|^2 \right]^2$$

3. Распределение электронов по углу и энергии

$$\sigma_{B}(E) = \int_{0}^{\pi} d\theta \sin \theta \int_{0}^{E_{\text{max}}} dE_{e} \ \sigma_{B}(E, E_{e}, \theta)$$

Вероятность вылета электрона в направлении θ с энергией E_e в Борновском приближении не зависит от массы A и заряда иона q:

$$F(E, E_e, \theta) = \frac{\sigma_B(E, E_e, \theta) \sin \theta}{\sigma_B(E)}.$$

$$f(E,\theta) = \int_{0}^{E_{\text{max}}} dE_e \ F(E,E_e,\theta)$$

3. Распределение электронов по углу $f(E,\theta)$

Рис.4 Распределение по углу вылета электрона

асимметрия $f(E,\theta)$ по θ : $\theta_{max} < 90^{\circ}$

3. Распределение электронов по энергии

Рис.5 Распределение по углу вылета и энергии электрона

$$\theta>90^{\rm o}~E_e<100~{\rm эB}~~F(E,E_e,\theta)\approx0.98-0.99$$

$$\theta=20\text{--}40^{\rm o}~E_e\geq1~{\rm кэВ}~F(E,E_e,\theta)\approx0.06\text{--}0.09~(\textit{f}(E,\theta)\approx0.010\text{--}0.015)~P_{\delta}\text{--}0.001$$

4. Потери энергии электрона

Рис.6 Потери энергии электрона $E_e \ge 120$ эВ [PENELOPE].

4. Длина трека электрона с энергией \boldsymbol{E}_{e}

Рис.7 Минимальной толщина $d_{min}(E_e)$ при $F_{tr}(E_e) < 0.001$.

4. Средняя длина трека электрона, в ионизационном столкновении

$$l(E,\theta) = \int_{0}^{\infty} dE_{e} F(E, E_{e}, \theta) d_{\min}(E_{e})$$

Рис.8 Длина трека электрона при замедлении до E_{min}

Статистическое Моделирование Траекторий (СМТ)

- 1. В тонкой мишени пренебрегается потерями энергии иона, E = const
- 2. Количество электронов $v(Z,E) d/\Delta x = const$
- 3. Угловое и энергетическое распределение **каждого** электрона описывается набором треков $\Delta t = \Delta x/V(E)$ $F(E,E_k,\theta_j)$ $(k=1,k_{max};\ j=1,j_{max})$ статистический вес $k_{max}=20,\ j_{max}=36(18)$ $\sum_{k,j}F_{k,j}=1$
- 4. Рассматривается область возле трека цилиндр(d, r_{max}): d=100 A, r_{max} ~30 A; ²⁴Mg v(Z,E) d < 500

Статистическое Моделирование Траекторий (СМТ)

5. Траектория электрона прямолинейная (внешних полей нет)

$$x(t) = x_0 + V_e(t) t \cos \theta$$

$$r(t) = r_0 + V_e(t) t \sin \theta$$

6. Изменение энергии электрона

$$E_e(t) = m V_e^2(t)/2 = E_0 - S(E_e) [(x - x_0)^2 + (r - r_0)^2]^{1/2}$$

Статистическое Моделирование Траекторий (СМТ)

7. Длина трека электрона
$$E_e(t) \ge E_{min}$$
 $(r \le r_{max})$.

8. Ион остаток Si⁺ не создает новых еh-пар

$$D(Z,E) = 1/\nu(Z,E)$$
 $U(r) = 2 \sum_{i=1}^{\infty} \frac{1}{\sqrt{r^2 + i^2 D^2(Z,E)}}$

$$E_{Si}(Z,E) \sim 30 \text{ эВ/нуклон} => q(Z,E) \to 0$$

Захват электрона и упругие столкновения Si⁰ (дефекты)

Статистическое Моделирование Траекторий (СМТ)

Рис.9 Модель для описания распределения количества электронов n(x,r,t) вблизи трека быстрого иона

Количество треков: $k_{max} \times j_{max} \times d/\Delta x \sim 10^5$

Mg-Si(d=100 A): $v \le 500, v_{\delta} \approx 0.5$

19/26

5. Результат моделирования

$$n(x, r, t) = >$$
 выборка определенных событий: $n(x, r, t) < 0$ при $\theta > 90^{\circ}$

1. Количество электронов, пролетающих через поверхность на глубине *x*.

$$n_r(X,t) = \int_0^{r_{\text{max}}} dr \ n(X,r,t)$$

2. Асимптотическое распределение eh- пар

$$n(x,r,t) \rightarrow N(x,r)$$
 при $t \rightarrow \infty$

$$N_x(r) = \int_0^d dx \ N(x,r) \qquad N_r(x) = \int_0^\infty dr \ N(x,r)$$

6.1 Распределение потока по времени

Рис.10 Изменение от времени потоков электронов, пролетающих через поверхность на глубине X.

6.2 Асимптотическое распределение

Рис.11 Распределение плотности электронов от глубины Баланс в слое $N_r(X) \to N_r^{\max}(X_{\max})$ при $X_{\max} > 20$ А

$$\sigma_B(E) => N_r^{\max}(E) \downarrow \text{ при } \uparrow E$$

6.2 Асимптотическое распределение

Рис.12 Аксиальный размер распределения электронов.

$$r_{\text{max}}(E) \uparrow \text{ при } \uparrow E$$

Заключение

Предложена модель описания потоков n(x,r,t) и концентраций N(x,r) электронов

- 1. Равномерное распределение еh-пар вдоль трека
- 2. Количество электронов

$$\sigma_{\rm exp}(Z=1,E)$$
, $\overline{q}(Z,E)$, $C_{gs}(E, \varepsilon_{sol})$

3. Первое борновское приближение

$$F(E,E_k,\theta_j)$$
 $(k=1,k_{max}; j=1,j_{max})$

- 4. $S(E_{\rm e})$ [Монте-Карло] + экстраполяция до $E_e = 20$ эВ
- 5. Трек каждого электрона до $E_e = 20$ эВ

Выводы

Результаты расчетов 24 Mg - Si(d=100 A):

- 1. Длительность импульса n(x,r,t): $\Delta t \propto 10^{-15} \ c$
- 2. Асимметрия n(t) за счет $F(E_k, \theta_i)$ и $l(E, \theta)$
- 3. $n_r(x,t) \to n_r^{\max}(x,t) \uparrow \text{ при } x \uparrow$
- 4. $N_r(X) \rightarrow N_r^{\text{max}}(X_{\text{max}}); X_{\text{max}} \approx 20 \text{ Å}$
- 5. $N_x(r)$, $r < r_{max}(r) = 7 25 \text{ A}$

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации по проекту «<u>Развитие синхротронных и нейтронных исследований и инфраструктуры для материалов энергетики нового поколения и безопасного захоронения радиоактивных отходов»</u> — грант № 075-15-2021-1353.

СПАСИБО ЗА ВНИМАНИЕ