52-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами



## ВЛИЯНИЕ ОБЛУЧЕНИЯ ИОНАМИ НА ПОЛИМЕРНУЮ ПОДЛОЖКУ В ПРОЦЕССЕ ФОРМИРОВАНИЯ НАНОЧАСТИЦ ЗОЛОТА.

В.М.Студзинский<sup>⊠1,2</sup>, К.В.Карабешкин<sup>1</sup>, М.В.Мишин<sup>2</sup>, Е.Д.Федоренко<sup>1</sup>, П.А.Карасев<sup>1</sup>

<sup>1</sup>Политехнический университет, Санкт-Петербург, Россия

<sup>2</sup>Алферовский университет, Санкт-Петербург, Россия

<sup>™</sup>Svm.fl@mail.com

# Введение

Облучение ионами тонкой плёнки металла один из методов формирования наночастиц на полимерной подложке. \_\_\_\_

Au

- В результате на полимерных подложках получаются наночастицы в широком диапазоне размеров, которые удобно использовать для SERS.
- Облучение ионов влияет и на подложку, данная работа направлена на изучение этого влияния.

### Методика эксперимента





Исследование толщины полимерного слоя проводилось на АСМ и она составила порядка 70 нм и 200 нм. Методом RBS была определена толщина слоя золота на образцах: 8.7 нм и 5.7 нм соответственно.

Ρ Та PF4 12 ے ک 100 200 300 400 500 Depth (Ang)

результат моделирования в программном пакете

RUMP (красный). Толщина золота 5.7 нм

Рис.2 Количество смещений атомов на единице длины в зависимости

Расчёт проводился одинаковым. ПО формуле:

$$DPA_{Au} = rac{n_{v} \cdot D}{n_{at}}$$
 ,

#### Таблица 1 дозы облучения ионами.

|  | Доза,                        | Флюенс, см <sup>-2</sup> |        | Флюенс, см <sup>-2</sup> |          |          |
|--|------------------------------|--------------------------|--------|--------------------------|----------|----------|
|  | <b>DPA</b> <sub>Au</sub>     | Толщина Au 5.7 нм        |        | Толщина Аи 8.7 нм        |          |          |
|  |                              | Р                        | $PF_4$ | Р                        | $PF_4$   | Та       |
|  | <b>0.27·10</b> <sup>-4</sup> | -                        | 4E+10  | -                        | -        | -        |
|  | 0.54·10 <sup>-4</sup>        | 22.58E+10                | 8E+10  | -                        | -        | -        |
|  | 0.27·10 <sup>-3</sup>        | 11.29E+10                | 4E+11  | 7.25E+10                 | 2.43E+10 | 1.17E+10 |
|  | 0.54·10 <sup>-3</sup>        | 22.58E+11                | 8E+11  | 1.41E+11                 | 4.86E+10 | 2.35E+10 |
|  | 0.54·10 <sup>-2</sup>        | 22.58E+12                | -      | -                        | -        | -        |
|  | <b>0.27·10</b> <sup>-1</sup> | 11.29E+13                | 4E+13  | 0.71E+13                 | 2.43E+12 | 1.17E+12 |
|  | 0.27                         | 11.29E+14                | 4E+14  | 0.71E+14                 | 2.43E+13 | 1.17E+13 |
|  | 0.54                         | 22.58E+14                | 8E+14  | -                        | -        | -        |
|  | 0.81                         | 33.87E+14                | 12E+14 | -                        | -        | -        |

от глубины при облучении ПММА, покрытого золотой плёнкой толщиной 10нм. Первый пик соответствует смещениям атомов золота, второй –максимум смещения атомов ПММА.

| 2.7  | - | - | 2.43E+14 | 2.43E+14 | 1.17E+14 |
|------|---|---|----------|----------|----------|
| 7.1  | - | - | 1.65E+16 | 7.29E+14 | 3.52E+14 |
| 12.5 | - | - | 3.63E+16 | 1.22E+15 | 5.87E+15 |

## Результаты и обсуждение





Рис 4 Спектры пропускания в ИК области образцов до облучения ( чёрный непрерывный) и нанесения (черный пунктир) и после облучения золотого слоя (цветные) 5.7нм(пунктир) и 8.7нм (непрерывные).В окне спектр поглощения ПММА с функциональными группами.





Рис 6 Зависимость величины пика групп –C=O (1725 см<sup>-1</sup>) поглощения от дозы

Ta 8.7nm

12





Рис 3 РЭМ(a,c,d,e) и ACM(b,f,g,h) изображения образцов с плёнкой золота 8.7 nm и слоем ПММА 70nm : до облучения(puc. 4(a,b)) и после облучения ионами Р (puc. 4 (c,f)), PF<sub>4</sub>(puc. 4 (d,g)) и Та(puc. 4 (e,h)) до дозы  $DPA_{A_{II}}=12.5$ 



(arb.

absorption

0.015

0.010

0.005







- Облучение ионами PF<sub>4</sub>, P, Ta влияет на подложку схожим образом
- Образование наночастиц золота на поверхности ПММА происходит в большей степени за счёт ионно стимулированной миграции атомов золота, а не разрушения подложки полимера.
- Облучение ионами ведёт к разрушению цепочек С-СН<sub>2</sub> и –С=О.
- В процессе формирования наночастиц интенсивность проходящего света в ИК диапазоне увеличивается, что позволяет использовать FTIR как быстрый метод оценки степени формирования наночастиц