•ИССЛЕДОВАНИЕ ПЛЕНОК SiO₂, имплантированных Zn, в качестве активной среды Мемристоров

<u>В.В. Привезенцев^{1,*}</u>, А.А. Фирсов¹, А.П. Сергеев¹, В.С. Куликаускас², В.В. Затекин², Е.П. Кириленко³, А.В. Горячев³, А.В. Ковальский⁴

¹ФНЦ «НИИ системных исследований РАН», 117218 Москва, Россия ²НИИ ядерной физики, МГУ им. М.В. Ломоносова, 119991 Москва, Россия ³ИМНЭ РАН, 119991 Москва, Россия

⁴ИПТМ РАН, Черноголовка, 141143 Московская обл., Россия

(НК) различных металлов и их оксидов в • Свойства нанокластеров полупроводниковых и диэлектрических матрицах широко исследуются в связи с возможностью применения таких материалов в современных устройствах нано-, микро- и оптоэлектроники. Среди них НК оксида цинка играют заметную роль, поскольку ZnO имеет широкую запрещенную зону 3,37эВ и большую энергию связи в экситоне 60мэВ, что позволит их использовать в излучательных устройствах при повышенных температурах. Благодаря другим уникальным свойствам оксида цинка, такие материалы смогут найти применение в солнечных элементах, газовых сенсорах, в спинтронике и запоминающих устройствах (мемристорах), а также в медицине и биологии. Ранее предпринималось несколько попыток формирования Zn-содержащих НК в аморфном кварцевом стекле путем имплантации Zn с последующим термическим окислением. Представлены результаты исследования пленок SiO₂, имплантированных Zn и окисленных при повышенных температурах, в качестве активной среды мемристоров.

Модельные спектры РОР

Образцы и методики эксперимента

• На кварцевые подложки методом электронно-лучевого испарения были нанесены слой золота толщиной 100нм (нижний электрод), а затем пленки SiO₂ толщиной 140 нм. Для получения равномерного распределения цинка по толщине пленки была проведена имплантация при энергиях 20 и 120кэВ с дозой 5×10^{16} /см². Образцы отжигались на воздухе в течение 40мин в диапазоне температур 400-800°C с шагом 100°C. В конце процесса на пленку SiO₂ через маску напылялся слой алюминия толщиной 200нм, в котором формировались верхние электроды в виде кругов с диаметром 1.5 мм.

• Исследование профилей имплантированного Zn было проведено с помощью резерфордовского обратного рассеяния (POP) ионов гелия с энергией 700кэВ, а также методом времяпролетной масс-спектрометрии. Химическое состояние цинка и фазовый состав пленки определяли методами Оже-электронной спектроскопии и комбинационного (рамановского) рассеяния.

Fig.2. Модельный POP спектр и концентрационный SRIM профиль цинка после имплантации.

Экспериментальные спектры РОР

Fig.3. Экспериментальные спектры РОР и спектры РОР зоны цинка после имплантации

Времяпролетная масс-спектрометрия

и отжига при 700оС.

Zn_in_SiO2-0 100000 10000 (arb.units) counts Zn+ 1000 Intensity, ZnO-100 Au+ 10 intensity —Au-50 100 150 0,1 Raman Depth, nm

Рис.1. TOF-SIMS исследования образцов после имплантации.

Zn_in_SiO2-3

Рис.2. TOF-SIMS исследования образцов после отжига при 700°С.

200 300 400 500 600 700 800 Raman shift (cm⁻¹)

Fig.4. Раман-спектры после отжига при различных температурах, 1- после имплантации, после отжига при температурах, оС: 2 – 400, 3 – 600, 4 - 800.

Выводы

1) После имплантации цинк имеет 2 максимума на глубинах 20 и 85 нм. 2) После имплантации в образце формируются кластеры состава Zn·ZnO вблизи верхней поверхности пленки SiO₂ и с фазой Zn в ее глубине. 3) После отжига при 700°С имеется максимумы на глубинах 20, 40 и 85 нм. 4) После отжига при 700°С в образце формируются кластеры с фазой ZnO·Zn₂SiO₄ вблизи верхней поверхности пленки SiO₂ и с фазой Zn·ZnO в ее глубине. 5) После отжига при 700°С полученные пленки имеют BAX с характерным для мемристоров гистерезисом.