



Институт физики прочности и материаловедения СО РАН, г. Томск

### ВЛИЯНИЕ ОБЛУЧЕНИЯ ИМПУЛЬСНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ НА ДЕФЕКТНУЮ СТРУКТУРУ ПРИПОВЕРХНОСТНОГО СЛОЯ СПЛАВОВ СИСТЕМЫ Zr-Nb-H

М.А. Кругляков, Е.Н. Степанова, Г.П. Грабовецкая

### Микроструктура сплавов Zr-1Nb и Zr-1Nb-0,21H в 2

#### исходном состоянии

| Nb  | Fe     | Н      | Zr        |
|-----|--------|--------|-----------|
| 1,0 | < 0,05 | 0,0016 | остальное |



| Nb  | Fe     | Н    | Zr        |
|-----|--------|------|-----------|
| 1,0 | < 0,05 | 0,21 | остальное |



Промышленный сплав Zr-1Nb (марка Э110) имеет поликристаллическую структуру с размером зерен фазы α-Zr в поперечном сечении 3-5 мкм, в продольном – 8-12 мкм. Вторичные фазы в виде частиц, размерами 10-50 нм присутствуют объеме и на границах зерен сплава Общая объемная доля вторичных фаз не превышает 2 об. % Наводороживание сплава до концентрации ~0,21 мас.% не изменяет размеры зерен и выделений вторичных фаз.

### Фазовый состав сплавов Zr-1Nb и Zr-1Nb-0,21H



Образцы сплавов Zr-1Nb и Zr-1Nb-Н облучали импульсным электронным пучком с плотностью энергии 5 (режим без плавления и 12 Дж/см<sup>2</sup> (режим плавления поверхности) Образцы облучали тремя импульсами с длительностью импульса – 50 мкс и частотой – 0.3 с<sup>-1</sup>.

## Структура приповерхностного слоя сплавов Zr-1 Nb 4







 $\begin{array}{l} \rho \ \ 1,6\cdot 10^{13} \rightarrow 3,2\cdot 10^{14} \ \mbox{m}^{-2} \\ \Delta\epsilon \ \ 3,2\cdot 10^{-4} \rightarrow 1,310^{-3}. \end{array}$ 

В объеме зерен поверхностного слоя формируется пластинчатая структура с размерами пакетов параллельных пластин 1.5-2.5 мкм. Ширина пластин в пакетах колеблется от 20 до 300 нм

### Структура поверхностного слоя сплава Zr-1Nb-0,21H



 $\rho \ 3.0 \cdot 10^{14} \rightarrow 7.4 \cdot 10^{14} \text{ m}^{-2}$  $\Delta \epsilon \ 1.4 \cdot 10^{-3} \rightarrow 2.9 \cdot 10^{-3}.$ 



В приповерхностном слое сплава Zr-1Nb-H шириной ~1 мкм гидриды не наблюдаются. При этом общая концентрация водорода в сплаве уменьшается незначительно (на 0,003– 0,004 мас. %).

#### Дефектная структура при поверхностного слоя сплавов Zr-1Nb и Zr-1Nb-0,21H

# Взаимосвязь параметров импульсного распределения аннигиляции позитронов



# Спектры временного распределения аннигиляции позитронов



Параметры S- и W характеризуют процессы аннигиляции позитронов с валентными и остовными электронами соответственно.

#### Дефектная структура приповерхностного слоя сплавов Zr-1Nb и Zr-1Nb-0,21H

| Материал       | Е,<br>Дж/см <sup>2</sup> | т <sub>1</sub> , пс | <i>I</i> <sub>1</sub> , % | т <sub>2</sub> , пс | I_,<br>% | т <sub>3</sub> ,<br>пс | I 3.<br>% |
|----------------|--------------------------|---------------------|---------------------------|---------------------|----------|------------------------|-----------|
| Zr-1Nb (отжиг) | 0                        | 166±1               | 100                       | -                   | -        | -                      | -         |
| Zr-1Nb.        | 0                        | 166±1               | 84                        | 210±5               | 16       | -                      | -         |
| Zr-1Nb.        | 5                        | 163±1               | 23                        | 205±5               | 66       | 320                    | 11        |
| Zr-1Nb         | 12                       | 166±1               | 66                        | 205±5               | 21       | 193                    | 26        |
| Zr-1Nb-0,21H   | 0                        | 163±1               | 53                        | 205±5               | 47       | -                      | -         |
| Zr-1Nb-0,21H   | 5                        | 166±1               | 5                         | 204±5               | 95       |                        |           |
| Zr-1Nb-0,21H   | 12                       | 166±1               | 56                        | 209±5               | 26       | 280                    | 18        |

 $\tau = 166 \pm 2$  пс – аннигиляцией позитронов в решетке циркония

**τ = 193±5 пс – аннигиляция на дефектах типа** «вакансия-примесь» или межфахных границах.

**τ = 215-220 пс – аннигиляция на дефектах** типа «дислокация»

**τ = 205-210 пс – аннигиляция на дефектах** типа «водород-вакансионный комплекс»

**τ = 320±10 пс – аннигиляция на дефектах типа «вакансионный комплекс»** 

<mark>τ = 280±10 пс – аннигиляция на дефе</mark>ктах типа «сложный водородвакансионный комплекс» *(mV-n*H) 7

### Механические свойства сплавов Zr-1Nb и Zr-1Nb-0,21H

| Материал | Е, Дж/см <sup>2</sup> | σ <sub>02</sub> , ΜΠа | σ <sub>02</sub> , ΜΠа | ε <sub>B</sub> , % | δ, % |
|----------|-----------------------|-----------------------|-----------------------|--------------------|------|
| Zr-1Nb   | 0                     | 300                   | 445                   | 18                 | 36   |
| Zr-1Nb   | 5                     | 319                   | 425                   | 22                 | 35   |
| Zr-1Nb-H | 0                     | 505                   | 612                   | 8                  | 17   |
| Zr-1Nb-H | 5                     | 526                   | 628                   | 12                 | 19   |

#### Механические свойства сплавов при 293 К

#### Предел текучести



#### Однородная деформация



Температурная зависимость предела текучести и однородной деформации сплавов Zr-1Nb и Zr-1Nb-H 8

#### Фрактограммы поверхности разрушения



Деформационный рельеф рабочей части образца

 $E = 12 \ Дж/см^2$ 



 $\mathbf{E} = \mathbf{0}$ 

ε = ~8 %

 $\mathbf{E} = \mathbf{0}$ 

2

## Разрушение сплава Zr-1Nb-0,21H

9

#### Заключение

Таким образом, облучение сплавов Zr-1Nb и Zr-1Nb-0,21H в режиме отсутствия плавления не изменяет размера зерен и выделений фазы  $\beta$ -Nb, но приводит к увеличению микроискажений кристаллической решетки фазы  $\alpha$ -Zr и росту плотности дислокаций в приповерхностном слое. В результате облучения в режиме плавления в приповерхностном слое шириной 8-10 мкм сплавов Zr-1Nb и Zr-1Nb-0,21H формируется пластинчатая  $\alpha + \alpha'$  структура с поперечным размером пластин 20-300 нм. При этом в приповерхностном слое наряду с ростом плотности дефектов, увеличивающих свободный объем (дислокации, вакансии и вакансионные комплексы), происходит растворение фазы  $\beta$ -Nb и формирование дефектов типа «вакансия-примесь». Присутствие водорода способствует при облучении импульсным электронным пучком в режиме плавления образованию в приповерхностном слое сплава Zr-1Nb-0,21H сложных водород-вакансионных комплексов. При этом дислокации остаются основным типом дефектов.

Облучение импульсным электронным пучком в режиме плавления поверхности приводит к росту прочностных характеристик образцов наводороженного сплава Zr-1Nb на 15–25 % по сравнению с не облученными образцами с соответствующей концентрацией водорода. При этом в 1,4-1,5 увеличивается однородная деформация наводороженного сплава, что свидетельствует о росте его сопротивления водородной хрупкости



## Спасибо за внимание!