

Н.В. Илясова, <u>О.В. Кондракова</u>, А.И. Кудюкин, Е.Н. Моос, М.Ю. Орлов

Ионно-плазменное и лазерное воздействия излучения на биоматериалы

e-mail: kov0177@mail.ru

Тулиновская международная конференция, Москва , 30 мая-1 июня 2023

Актуальность работы

•Проблема физического материаловедения биотканей и биоматериалов играет ключевую роль в современной медицинской отрасли.

Цель исследования:

•сопоставить результаты исследования воздействия энергетических потоков плазмы и лазера на примере модельных образцов брекет-систем.

Материалы и методы

• Поверхность исследовалась на двух брекет-системах одной компании производителя

<u>Металлические</u> <u>Victory Series TM (</u>3M Unitek)

<u>керамические</u> <u>Clarity TM</u> (3M Unitek)

Биопрепараты

На малой выборке были подготовлены биопрепараты человеческих зубов, не пораженных кариесом и удаленных по ортодонтическим и пародонтологическим показаниям

4th Global Conference & Expo on Materials Science & Engineering (May 25-26, 2022), Germany, Comparative Analysis of Fracture Surface of Cohesive Bonds of Multilayer Systems

Илясова Н.В. Кондракова О.В., Кудюкин А.И., Моос Е.Н. Сравнительный анализ поверхностей разрыва когеозных связей в многослойных системах // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 1. - С. 62 – 69.

• Обработка поверхности брекетов аппаратом «Мультиплаз - 2500»

Применение CO₂ - лазера с длиной волны - 10,6 мкм, средней мощностью 80 Вт

Исследование участков поверхности брекетов производилось с помощью поверхностного профилирования методом ACM (атомно-силовая микроскопия) до и после воздействия водородной плазмы

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ Растровые 3D-изображения поверхностей, полученные после сканирования основания металлического (*a*) и керамического (*b*) брекетов

a)

b)

Диаграмма значений средней шероховатости поверхностей основания металлического и керамического брекетов (до обработки)

 Изменение значений средней шероховатости поверхности основания металлического брекета: начальная поверхность, после однократного и двукратного воздействия водородной плазмы

Растровые 3D-изображения поверхностей основания металлического брекета, полученные после однократного (*a*) и двукратного (*b*) воздействия водородной плазмы

a)

b)

• Изменение значений средней шероховатости поверхности основания керамического брекета: начальная поверхность, после однократного и двукратного воздействия водородной плазмы

Зависимости высоты рельефа от координаты сканирования по двум ортогональным направлениям (*a*, *b*) и график сканирования поверхности основания металлического брекета (*c*)

Зависимости высоты рельефа от координаты сканирования по двум ортогональным направлениям (*a*, *b*) и график сканирования поверхности основания керамического

брекета (с)

b)

a)

15

c)

Растровые 3D-изображения поверхностей основания керамического брекета, полученные после однократного (*a*) и двукратного (*b*) воздействия водородной плазмы

a)

b)

Степень шероховатости до и после внешнего воздействия ионами водородной плазмы

Расстояние до	Металлический	Керамический
источника L, м	брекет, Ѕа, нм	брекет, Ѕа, нм
до обработки	118,1	64
0,25	184,4	97,4
0,3	273,6	202,9
0,5	181,6	150,2

Сила отрыва образца, F (H)

Расстояние, L,м	Металлический	Керамический
	брекет, F (Н)	брекет, F (Н)
до обработки	22,5	11
0,25	30	14
0,3	35,5	19
0,5	31,5	11

Средняя шероховатость (Sa) объекта исследования после обработки CO₂-лазером

Брекеты (3M Unitek)	Изначальная	После воздействия
	поверхность	лазера Sa, нм
	Sa, нм	
Металлические	118.1	1(4-5,6 Вт)- 180.0
Viktory Series		2(9,6 Вт)- 157.6
		3(13,6 Вт)- 189.0
Керамические Clarity	64	1(4-5,6 Вт)- 239.0
		2(9,6 Вт)- 155.1
		3(13,6 Вт)- 174.7

Изменение силы отрыва F (Н) брекетов после обработки поверхности образцов CO₂-лазером

Cla	arity	Vi	ctory
1	50,5	1	60,2
2	70	2	46,5
3	74	3	92

Растровые 3D-изображения поверхностей основания металлического брекета без воздействия (*a*), полученные после однократного (*b*) воздействия водородной плазмой и CO₂-лазера (*c*)

a)

b)

c)

выводы

- Обработка поверхности водородной плазмой усиливает шероховатость и силу сцепления. Исследования шероховатости и силы разрыва трехслойной струкуры показал, что увеличение шероховатости за счет ионно-плазменного воздействия увеличивает силу разрыва с 22,5 Н у металлического образца и 11 Н у керамичекского до 35,5 Н и 19 Н при обработке водородной плазмой.
- При ионно-плазменной обработке средняя шероховатость увеличивается. Самые высокие значения средний шероховатости наблюдаются при обработке объекта с расстояния 0,3 м. При увеличении мощности и расстояния до объекта значения Sa уменьшаются.
- Сила отрыва изменяется в соответствии с изменение Sa. Чем больше средняя шероховатость, тем выше сила отрыва. Средняя шероховатость растет при ионно-плазменной обработке немонотонно.
- Обработка поверхности CO₂ -лазером усиливает шероховатость и силу сцепления. Исследования шероховатости и силы разрыва трехслойной струкуры показал, что увеличение шероховатости за счет воздействия CO₂ лазером увеличивает силу разрыва с 22,5 H у металлического образца и 11 H у керамичекского до 92 H и 74 H.
- При обработке поверхности CO₂ -лазером средняя шероховатость увеличивается. Самые высокие значения средний шероховатости наблюдаются при обработке керамического объекта с мощностью прибора 13,6 Вт, металлического 4-5,6 Вт.
- Средняя шероховатость растет при обработке поверхности CO₂ лазером немонотонно.
- В обоих случаях увеличение энергетического воздействия обнаруживает немонотонную зависимость изменения шероховатости обрабатываемой поверхности. С этим коррелирует изменение силы разрыва трехслойных структур.

Спасибо за внимание

Авторы:

Н.В. Илясова, О.В. Кондракова,

А.И. Кудюкин, Е.Н. Моос, М.Ю. Орлов

Тулиновская международная конференция, Москва, 30 мая-1 июня 2023