Фрактальный анализ характеристик каскадов столкновений в Ga₂O₃

А.И. Стручков^{*)}, Я.Г. Горне, К.В. Карабешкин, П.А. Карасев, А.И. Титов Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия *andrei.struchckov@yandex.ru

52-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами, 30 мая – 1 июня 2023

Нами было рассмотрено формирование каскадов столкновений в оксиде галлия при облучении ионами различных типов и энергий. Расчет параметров каскадов осуществлялся по методике [1], которая учитывает тот факт, что геометрия каскадов столкновений может быть рассмотрена как имеющая фрактальную природу. Была рассчитана фрактальная размерность каскадов для всех случаев облучения, наряду с плотностью каскадов.

Введение и детали моделирования

многообещающим Оксид является галлия весьма полупроводником для использования в приборах высокой мощности и оптоэлектронике. Хорошо известно, что имплантация сопровождается образованием ИОНОВ всегда В мишени радиационных дефектов, причем эффективность их накопления может в большой мере зависеть от плотности каскадов столкновений [2].

С целью расчета параметров каскадов с помощью кода TRIM [3] были получены 3D распределения вакансий, сгенерированных при ионном облучении в Ga₂O₃. Плотность Ga₂O₃ принималась за 6.44 г/см³, пороговая энергия смещения – 25 эВ для обеих подрешеток. Энергии и типы рассмотренных ионов указаны в таблице 1.

Результаты и обсуждение

Энергии подбирались таким образом, чтобы глубина максимума генерации вакансий (Rpd) оставалась одинаковой.

Ион	Энергия, кэВ	Rpd, нм
F	25	16
Ρ	40	16
Хе	120	17
PF ₄	140	16

Таблица 1. Ионы, рассмотренные в данной работе, и соответствующая глубина максимума генерации вакансий, согласно коду TRIM.

Для расчета фрактальных размерностей каскадов, был применен метод, описанный в [1]. Для каждой вакансии в каскаде рассматривается число соседних вакансий <N_v>, расположенных внутри сферы радиуса R_c, центр которой расположен в данной вакансии.

Природа каскада столкновений как фрактала выражается формулой:

$$\langle N_{\nu} \rangle = k_{\circ} \left(\frac{R_c}{R_{norm}} \right)^D$$

где D – фрактальная размерность, R_{norm} – нормирующий радиус, k₀ – множитель, равный <N_v> при R_c=R_{norm}.

Расчет средних значений <N_v> для вакансий на определенной глубине для разных значений R_c позволяет получить значение фрактальной размерности D при построении зависимости <N_v> от

Ион	Энергия, кэВ	Фракт. размерность
F	25	1.15
Ρ	40	1.30
Хе	120	1.61
PF ₄	140	1.49

Таблица 2. Величины фрактальных размерностей каскадов столкновений для различных ионов, рассчитанные из наклонов прямых участков на рис. 2

R_c в логарифмическом масштабе (рис. 2).

На рис. 1 приведены рассчитанные зависимости плотности каскадов от глубины.

На рис. З для сравнения приведены плотности каскадов, рассчитанные по методу из [2], учитывающему формирование субкаскадов.

Заключение

≻ Был произведен фрактальный анализ характеристик каскадов столкновений в Ga₂O₃ при облучении атомарными ионами F, P, Xe и молекулярными ионами PF₄. Фрактальная размерность каскада возрастает по мере возрастания массы иона (при сохраняемом постоянным отношении энергии к массе).

Плотность каскадов столкновений на поверхности существенно выше для тяжелого иона Хе и молекулярного иона PF₄ по сравнению с легкими ионами F и P. Преимущества данного метода расчета плотности каскадов по сравнению с приводимым в [2] для объяснения влияния плотности каскадов на накопление дефектов в Ga₂O₃ требуют дальнейшего рассмотрения.

- 1. J. B. Wallace, et al. // Sci. Rep., 2017, 7, 17574.
- 2. S.O. Kucheyev, et al. // J. Phys. D, 2009, 42, 085309.
- 3. Ziegler J.F., SRIM-2013 software package, available online at <u>http://www.srim.org</u>.