ION-BEAM SURFACE REDUCTION OF METAL HIGHER OXIDES

Nikolai Alov

Moscow State University, Institute of Nuclear Physics, 119991 Moscow, Russia n_alov@mail.ru

AIM

RESULTS

Investigation of surface modification of bulk samples of higher The irradiation of MoO₃, WO₃, Nb₂O₅ and Ta₂O₅ by low-energy Ar⁺ oxides MoO₃, WO₃, Nb₂O₅, Ta₂O₅ under low-energy Ar⁺ ion ions induces the surface reduction and the formation of modified bombardment and in situ non-destructive determination of layer consisting of MoO₂, MoO₂, Mo; WO₂, WO₂, W; NbO₂, NbO and chemical composition of modified surface layers by X-ray TaO, TaO, TaO, Ta, respectively. photoelectron spectroscopy.

EXPERIMENTAL

Dose $D = 10^{15} - 5 \times 10^{17} \text{ cm}^{-2}$ Irradiation time t = 0.5-60 min lon current $I = 10 \,\mu A$ Energy E = 3 keVAngle of ion incidence $a = 90^{\circ}$ Room temperature Pressed powder oxide samples of high purity

The surface of Nb₂O₅ is reduced weaker than the surface of MoO₂ and the surface of $Ta_{2}O_{s}$ is reduced weaker than the surface of WO, under the irradiation by low-energy Ar⁺ ions.

The surface metallization degree of oxides increases dramatically in row Nb₂O₅ (0 %) \rightarrow MoO₂ (2 %) \rightarrow Ta₂O₅ (12 %) \rightarrow WO₂ (44 %) for 3 keV År+ ion bombardment.

The ion-beam induced changes in oxide surface composition should be taken into account during the surface cleaning, depth profiling and analysis by SIMS and ISS.

X-ray photoelectron spectra of metal core levels of higher oxides and Ar⁺ ion-beam modified oxide surfaces Nb₂O₅ Ta 4 f Nb 3d Mo 3d Ta₋O

1 — surfaces of virgin higher oxides; 2 — surfaces of higher oxides after Ar⁺ ion bombardment (E = 3 keV; $D \approx 3 \times 10^{17} \text{ cm}^{-2}$)

Dose dependencies of chemical composition of Ar⁺ ion-beam modified oxide surfaces from XPS data

