
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ имени Д.В. СКОБЕЛЬЦЫНА

ТЕЗИСЫ ДОКЛАДОВ 51-й международной Тулиновской конференции ПО ФИЗИКЕ ВЗАИМОДЕЙСТВИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ С КРИСТАЛЛАМИ

(Москва 24 мая – 26 мая 2022)

УДК 539.1.01.08 ББК 22.37. Т29

Под общей редакцией проф. Н.Г. Чеченина

Редколлегия: А.М. Борисов, Ю.А. Ермаков, А.С. Кубанкин, В.С. Куликаускас, Е.С. Машкова, В.С. Черныш, Н.Г. Чеченин

Т29 Тезисы докладов 51-й международной Тулиновской конференции по физике взаимодействия заряженных частиц с кристаллами / Под ред. проф. Н.Г. Чеченина

Сборник содержит тезисы докладов, отобранные оргкомитетом для представления на конференции.

ПРОГРАММА 51-й МЕЖДУНАРОДНОЙ ТУЛИНОВСКОЙ КОНФЕРЕНЦИИ ПО ФИЗИКЕ ВЗАИМОДЕЙСТВИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ С КРИСТАЛЛАМИ

1-й день, вторник, 24 мая

930-1000 Регистрация

10^{00} - 10^{20} Вступительное слово. Регламент конференции

Секция І

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ВЗАИМОДЕЙСТВИЯ УСКОРЕННЫХ ЧАСТИЦ С ВЕЩЕСТВОМ (ПРИГЛАШЕННЫЕ ДОКЛАДЫ С ОБЗОРОМ НОВЫХ РЕЗУЛЬТАТОВ В ПЕРСПЕКТИВНЫХ НАПРАВЛЕНИЯХ)

Председатель: Н.Г. Чеченин

10 ²⁰ -10 ⁵⁰ Н.Н. Андрианова, А.М. Борисов , Е.С. Машкова, М.А. Ов-
чинников. Температурные зависимости ионно-электронной эмиссии
углеродных материалов
10^{50} - 11^{25} С.Б. Дабагов. Профессор М.А. Кумахов и его вклад в физику
взаимодействия излучений с веществом
11^{25} - 11^{45} С.С. Зырянов, Ф.Г. Нешев. Циклотронный центр ядерной
медицины УрФУ
11 ⁴⁵ -12 ⁰⁰ А.А. Шемухин , В.С. Черныш, В.И. Шведунов, Д.О. Еремен-
ко, Ю.В. Балакшин, А.В. Назаров, А.П. Евсеев, Н.Г Чеченин, Д.К.
Миннебаев. Ускорительный комплекс МГУ26

1200 - 1215 Общее фотографирование

<u> 12¹⁵ - 13¹⁵ Перер</u>ыв

Секция **II**

ВЗАИМОДЕЙСТВИЕ ИОНОВ С ПОВЕРХНОСТЬЮ И НАНОСТРУКТУРАМИ (РАССЕЯНИЕ, РАСПЫЛЕНИЕ, НАНОСТРУКТУРИРОВАНИЕ И ЭМИССИЯ ВТОРИЧНЫХ ЧАСТИЦ)

1	-6	39	сеп	ян	ие.	13	15_	14	30
л	-e	3 a	CEA	ан	ис.	١.	, -	14	

<u>Председатели:</u> В.С. Черныш, А.А. Шемухин
13 ¹⁵ -13 ³⁰ А.Д. Завильгельский , А.В. Назаров, А.Е. Иешкин, В.С. Черныш. Молекулярно-динамическое моделирование температурной зависимости коэффициента распыления при облучении газовыми кластерными ионами
13 ³⁰ -13 ⁴⁵ Д.С. Киреев, А.Е. Иешкин, Ю.А. Ермаков, В.С. Черныш. За-
рождение нанориплов на поверхности кремния при облучении газовы-
ми кластерными ионами30
13^{45} - 14^{00} Н.Г. Коробейщиков , И.В. Николаев, М.А. Роенко. Нано-
структурирование поверхности монокристаллов КТР ионно-
кластерным пучком аргона31
14^{00} - 14^{15} В.Е. Пуха , Г.В. Нечаев, Е.Н. Кабачков, П.А. Карасев, Е. Д.
Федоренко, И.И. Ходос. Полимеризация фуллерена при облучении
ускоренными ионами С ₆₀ 32
<u> 14¹⁵ – 15¹⁵ Перерыв на обед</u>
<u> 2-е заседание, 15¹⁵ -17⁰⁰</u> <u> Председатели:</u> А.М. Борисов, В.С. Ковивчак
Председатели: А.М. Борисов, В.С. Ковивчак
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин,
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспери-
Председатели: А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
<u>Председатели:</u> А.М. Борисов, В.С. Ковивчак 15 ¹⁵ -15 ³⁰ А.Н. Зиновьев , П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
Председатели: А.М. Борисов, В.С. Ковивчак 15¹⁵-15³⁰ А.Н. Зиновьев, П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
Председатели: А.М. Борисов, В.С. Ковивчак 15¹⁵-15³⁰ А.Н. Зиновьев, П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных
Председатели: А.М. Борисов, В.С. Ковивчак 15¹⁵-15³⁰ А.Н. Зиновьев, П.Ю. Бабенко, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин. Определение потенциала для системы Н-Аи из экспериментальных данных

	-
Пузынина, И.Г. Хрис Моделирование влия	г, М.Н. Мирзаев, Е.П. Попов, И.В. Пузынин, Т.П. стов, Р.Д. Христова, З.К. Тухлиев, З.А. Шарипов . иния графенового слоя в меди на распыление при и ионами
	гин, Р.С. Лаптев, А.Г. Копец, S. Krzysztof. Анализ
	ллических слоев Zr/Nb после протонного облуче-
пил	
1500 1030 05	
<u>1766-1856 Оосуждени</u>	е стендовых докладов
~	** ** ·
	и секции II «Взаимодействие ионов с поверхно-
	урами (рассеяние, распыление, наноструктури-
рование и эмиссия і	<u>вторичных частиц)».</u>
Председатели: А.Н.	Виновьев, Н.Г. Чеченин
 С.С. Волков, 	С.В. Николин, М.В. Чиркин. Энерго-силовые
	правления местоположением дугового разряда
	нии40
	в, Д.Т. Усманов, Ш.М. Ахмедов. Исследование
	ой эмиссии при бомбардировке Ті мишени кла-
	огозарядными ионами41
	ов, И. Сархадов, З.К. Тухлиев. Моделирование
	ессов, возникающих в материалах под действи-
	импульсов в рамках гиперболической модели
	шка42
	ов, И. Сархадов, З.К. Тухлиев, Х. Гафуров.
	ледование влияния конечной толщины образца
	ляции материалов43
5. В.Е. Пуха , А.	А. Бельмесов, П.А. Карасев, Е.Д. Федоренко,
И.И. Ходос. Фо	ормирование многослойных структур из ионно-
молекулярного	пучка С6044
	 Самойлов. Эффект многозначности перефо-
	атомов, распыленных с поверхности грани
	и Ar низкой энергии45
	в, Д.Т. Усманов, С.С. Исхакова, А.С. Халматов.
	оогенных процессов в термодесорбционной по-
	низационной спектрометрии активных органи-
	ений
	ов, Д.Т. Усманов, С.С. Исхакова. Математиче-
	акономерностей термодесорбционной поверх-
	ционной масс-спектрометрии органических со-
единений	47

9.	А.И. Толмачев, Л. Форлано. Развитие аналитических методов
	в теории распыления твердых тел48
10.	В.П. Кощеев, Ю.Н. Штанов. Моделирование потенциальной
	энергии взаимодействия двух атомов с помощью решения си-
	стемы нелинейных уравнений49
11.	
	распыления Ве ионами D и T методом молекулярной динами-
	ки50
12.	В.С. Михайлов, Д.С. Тенсин, А.Н. Зиновьев. Энергетические
	спектры отраженных частиц при бомбардировке атомами во-
	дорода поверхности вольфрама51
13.	В.С. Михайлов, А.Н. Зиновьев, Д.С. Тенсин. Коэффициенты
	отражения атомов водорода от поверхности бериллия и бе-
1.4	риллия, насыщенного водородом
14.	Б.Е. Умирзаков, С.Б.Донаев, Г.М. Ширинов. Исследование
	профилей распределения атомов по глубине чистого и ионно-
15	легированного кремния
15.	Электронная структура поверхности Si при ионной импланта-
	ции
16.	
10.	гий распыления от угла падения первичных ионов55
17.	Ф.Ф. Умаров, А.Н. Улукмурадов, И.Д. Ядгаров, И.З. Уролов,
	И.А. Абдурахманова. Компьютерное моделирование адсорб-
	ции фуллерена на графен56
18.	Е.Ю. Зыкова, К.Ф. Миннебаев, К.Е. Озерова, Н.Г. Орликов-
	ская, Э.И. Рау, А.А. Татаринцев. Влияние поверхностного по-
	тенциала диэлектрика на рост эмиссии положительных частиц
	при ионном облучении57
19.	У.Б. Улжаев, И.Д. Ядгаров, Е.А. Юлдашева. Моделирование
	процессов адсорбции атомов водорода на углеродных нано-
20	трубок
20.	А.С. Аширов, У.О. Кутлиев, Д.Д. Матякубов, П. Давлетова,
	Я.Ж. Жаббарова. Исследование малоуглового рассеяния ионов Ne^+ и Ar^+ с поверхностью $Al_2O_3(001)$ при скользящих углах
	падения
21	М.К. Каримов, У.О. Кутлиев , Д.Д. Матякубов, М. Отабаев,
۷1.	Я.Ж. Жаббарова. Рассеяние ионов от дефектной поверхности
	InGaP(001) при скользящих углах падения60
22.	А.М. Борисов, Е.С. Машкова, М.А. Овчинников, Р.Х. Хиса-
	мов, Р.Р. Мулюков. Влияние размера зерен на образование
	конусов на поверхности никеля при высокодозном облучении
	ионами аргона с энергией 30 кэВ
23	Р Л учабарганов Б.Г. Атабаев М.А. Пермууаменова З.Ш.

	Шаймарданов, А.С. Халматоа. Температурные пороги отрица-
	тельно-ионного кластерного распыления монокристалла
	кремния ионами цезия62
24.	Б.Г. Атабаев, Р. Джаббарганов. Температурные зависимости
	отрицательно-ионного атомарного и кластерного распыления
	эпитаксиальной пленки карбида кремния ионами цезия63
25.	М.Т. Нормуродов, А.К. Ташатов, Д.Б. Хакимова, С.Н. Эшбо-
	боев. Сравнительный анализ эмиссионных свойств сплава Рd-
	Ва, активированного температурным прогревом и лазерным
	облучением64
26.	Н.М. Мустафоева , А.К. Ташатов, М.Н. Аликулов. Изучение
	морфологии и электронной структуры нанопленок NiSi2, ис-
	пользуемых в приборах солнечной энергетики65
27.	Р. Джаббарганов, Б.Г. Атабаев, А.С. Халматов. Энергетиче-
	ские зависимости отрицательно-ионного атомарного и кла-
	стерного распыления меди66
28.	Γ . Γ . Бондаренко, М.Р. Фишер, В.И. Кристя . Моделирование
	влияния температуры катода с тонкой диэлектрической плен-
	кой на вольт-амперную характеристику тлеющего разряда67
29.	Л.А. Жиляков, В.С. Куликаускас. Скользящее взаимодей-
	ствие пучков ускоренных протонов с искривленной диэлек-
	трической поверхностью
30.	Б.Л. Оксенгендлер , Х.Б. Ашуров, С.Е. Максимов, Н.Н. Тура-
	ева. Взаимодействие заряженных частиц с иерархическими
	структурами69
31.	Е.В. Серегина, М.А. Степович, М.Н. Филиппов. О математи-
	ческой модели диффузии экситонов в полупроводнике с уче-
	том их переменного времени жизни70
32.	В.А. Андрианов, АЛ. Ерзинкян, Л.И. Ивлева, П.А. Лыков.
	Вспышки рентгеновского излучения и пульсирующий элек-
	тронный поток в рентгеновских источниках на основе кри-
22	сталлов SBN-61
33.	А.Д. Пятигор, К.А. Вохмянина. Моделирование прохождения
	электронов с энергией 10 кэВ через конусные диэлектриче-
2.4	ские капилляры
34.	Л.В. Мышеловка , А.Д. Пятигор, К.А. Вохмянина, В.С. Сот-
	никова. Исследование прохождения электронов с энергией 12-
25	15 keV через стеклянные сужающиеся капилляры
35.	
	движущейся заряженной частицы с помощью дифракционного
26	излучения на металлической сфере
36.	Ш.М. Ахмедов, Ш.Дж. Ахунов, Д.Т. Усманов, К.Т. Довранов,
	Х.Т. Довранов. Исследование закономерности поверхностной
	ионизации инсектицида циперметрина75

2-й день, среда, 25 мая

Секция III

ОРИЕНТАЦИОННЫЕ И РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ, ПОТЕРИ ЭНЕРГИИ, ИЗМЕНЕНИЕ ЗАРЯДОВОГО СОСТОЯНИЯ ЧАСТИЦ

10⁰⁰-11¹⁵, 1-е заседание

Председатели: А.С. Кубанкин, В.С. Малышевский

11¹⁵ -11³⁰ Перерыв

<u>11³⁰-12⁴⁵, 2-е заседание</u>

Председатели: Н.В. Новиков, А.Н. Зиновьев

ноэнергетического потока электронов при пироэлектрическом

эффекте в монокристалле танталата лития90)
12 ³⁰ -12 ⁴⁵ Xulvi R., Rojas J., Nuñez S., Irribarra E. Theoretical and	1
experimental study of the guiding effect for 5 keV electrons91	

14⁴⁵-13¹⁵ Обсуждение стендовых докладов

<u>Стендовые доклады «Ориентационные и релятивистские эффекты, потери энергии, изменение зарядового состояния частиц».</u>

Председатели: П. А. Карасёв, В.С. Малышевский

1. M.Kh. Khokonov , V.S. Lomanosov. Relative efficiency of the spin
contribution on radiation spectrum of high energy electrons moving in
oriented crystals and in the field of intense lasers92
2. А.Н. Олейник, П.В. Каратаев, А.С. Кубанкин, А.В. Щагин. При-
менение медленных осцилляции температуры монокристалла тан-
талата лития для генерации сильного электрического поля93
3. В.И. Дроник, И.А. Кищин, Р.М. Нажмудинов, А.С. Кубанкин.
Исследование эффекта трансформации конуса излучения вавилова-
черенкова в GEANT494
4. И.Е. Внуков, В.В. Колодочкин, А.С. Склярова, Ю.С. Шаблов.
Влияние мозаичности кристаллов на характеристики излучения
быстрых электронов95
5. А.В. Бердниченко, И.Е. Внуков , Ю.А. Гопонов, Ү. Takabayashi.
Использование кристаллов с асимметричной геометрией отражения
для измерения параметров электронных пучков96
6. А.В. Щагин. About research of dechanneling length of relativistic
particles in crystal by si detector with smoothly tunable thickness of de-
pleted layer97
7. Н.Н. Михеев. Глубина пробега пучка протонов в веществе при
нормальном падении частиц на поверхность образца98
8. Н.Н. Михеев, И.Ж. Безбах. Тормозная способность вещества для
пучка моноэнергетических альфа-частиц99
9. А.А. Савченко, А.А. Тищенко, Д.Ю. Сергеева. Обратное томсо-
новское рассеяние: перспективы и моделирование в
Geant4
10. М.В. Булгакова, В.С. Малышевский, Г.В. Фомин. Электромаг-
нитное излучение при ионизации ультрарелятивистских ионов на
границе раздела двух сред101
11. А.Н. Ашурко, О.В. Богданов, П.О. Казинский, Т.А. Тухфатул-
лин. Орбитальный угловой момент излучения релятивистских элек-
тронов, при плоскостном каналировании в кристалле
Si102

13¹⁵-14⁰⁰ Перерыв на обед

Секция IV

МОДИФИКАЦИЯ И АНАЛИЗ ПРИПОВЕРХНОСТНЫХ СЛОЕВ ИОННЫМИ И ЭЛЕКТРОННЫМИ ПУЧКАМИ

14⁰⁰-15⁰⁰, 1-е заседание

Председатели: В.С. Ковивчак, В.П. Попов

14^{00} - 14^{15} В.С. Ковивчак, Г.А. Болякно. Особенности воздействия
мощного ионного пучка на полиэтилентерефталат105
14 ¹⁵ -14 ³⁰ И.Д. Парфимович, Ф.Ф. Комаров, Л.А. Власукова, И.Н. Пар-
хоменко, Л.С. Новиков, В.Н. Черник. Воздействие потоков кислород-
ной плазмы на полимерные нанокомпозиты с углеродными наполни-
телями106
14 ³⁰ -14 ⁴⁵ Э.С. Хаметова , О.Р. Бакиева. Определение локальной атом-
ной структуры по перекрывающимся EXELFS спектрам107
14 ⁴⁵ -15 ⁰⁰ Е.В. Егоров, В.К. Егоров , П.С. Джамаев. Изучение модифи-
цированной внешней поверхности оболочки твэла ионно-пучковыми и
рентгеновскими методами108

15⁰⁰-15¹⁵ Перерыв

15¹⁵-16¹⁵, 2-е заседание

Председатели: И.И. Ташлыкова-Бушкевич, В.И. Бачурин

<u>16¹⁵–16³⁰Перерыв</u>

16^{30} - 17^{45} , 3-е заседание

Председатели: В.В. Углов, А.А. Шемухин

17⁴⁵-18⁰⁰ Перерыв

1800 - 1930 Обсуждение стендовых докладов

<u>Стендовые доклады «Модификация и анализ приповерхностных слоев</u> ионными и электронными пучками»

Председатели: Г.Е. Ремнёв, А.М. Борисов

- 4. **В.В. Поплавский**, И.Л. Поболь, И.П. Смягликов, О.Г. Бобрович, А.Н. Дробов, В.Г. Матыс. Состав и коррозионные свойства слоев,

	формируемых в процессах ионно-плазменной обработки поверхно-
	сти сплавов титана
5.	О.Г. Бобрович. Дефектообразование в арсениде галлия при им-
	плантации ионов алюминия и фосфора
6.	Ш.К. Кучканов , Х.Б. Ашуров, М.М. Адилов, А.И. Камардин, С.Е
	Максимов, Ш.Т. Хожиев. Влияние ионной обработки поверхности
	на генерацию эдс и токов в плёночных структурах Si-Ge/Si123
7.	В.В. Углов, С.В. Злоцкий, Г. Абади, И.С. Веремей, А.Е. Рыскұлов
	Л.А. Козловский, М.В. Здоровец. Состав, структура и внутренние
	напряжения в многослойных пленках нк-ZrN/a-ZrCu, облученных
0	ионами гелия и криптона
8.	В.В. Углов, А.Е. Рыскұлов, Д. Ке, М.М. Белов, С.В. Злоцкий, И.А.
	Иванов, А.Е. Курахмедов, Д.А. Мустафин, Ә.Д. Сапар, Е.В. Бихерт
	Структурно-фазовые изменения в концентрированных твердых
0	растворах системы V-Nb-Та-Ті, облученных ионами гелия125
9.	С.М. Барайшук, М. Вертель, В.К Долгий. Топография Со покры-
10	тия полученного ионно-ассистированным осаждением126 R.H. Khlifa , N.N. Nikitenkov. Protective coatings for accident tolerant
10.	fuel cladding impact of inner-side chromium coating on reactor neutron-
	ic performance
11.	•
11.	Злоцкий, И.А. Иванов, А.Л. Козловский, М.В. Здоровец. Состав и
	структура композита на основе карбида кремния, облученного
	ионами криптона
12.	Д.А. Ташмухамедова, М.Б. Юсупжанова, З.Турсунметова, М.А.
	Миржалилова, Х. Абдиев, Ж. Шерматов. Исследование электрон-
	ной структуры поверхности GaAs при низкоэнергетической ионной
	бомбардировке129
13.	Д.А. Ташмухамедова, А.Н. Ураков, С.Т. Гулямова, С.Т.Абраева
	3.М. Собиров, Б.Е. Умирзаков. Исследование состава и электрон-
	ной структуры ионно-имплантированных силикатных стекол130
14.	Б.Е. Умирзаков, Г.Х. Аллаярова, Н.Ж. Одилова, Д.Ж. Нурматова
	Закономерности формирования наноразмерных пленок оксидов
	SiO_2 на поверхности Si при низкоэнергетической имплантации
	ионов O_2^+ и последующего отжига
15.	Ф.Г. Нешов, И.Н. Бажукова, Л.В. Викторов, Д.В. Райков, О.Е.
	Прокопьева. Способ увеличения бактерицидных свойств нано-
1.	размерных алмазоподобных пленок
16.	О.М. Михалкович, О.Г. Бобрович, С.М. Барайшук. Управление
	смачиваемостью поверхности осаждением покрытий на основе Ті и
17	Со
1/.	гламмы монокристацца AloQ2
	1.14

Т.В. Панова, В.С. Ковивчак, Т.В. Хрянина. Модификация
свойств поверхностных слоев алюминиевых сплавов под дей-
ствием мощных ионных пучков
М.В. Жидков, А.Е. Лигачев, С.А. Сорокин, Г.В. Потемкин, Ю.Р.
Колобов. Топография поверхности хрома после его обработки
импульсным потоком рентгеновского излучения136
Е.Ю. Зыкова, А.Е. Иешкин, К.Е. Озерова, Н.Г. Орликовская, Э.И.
Рау, А.А. Татаринцев. Эволюция спектров катодолюминесцен-
ции в процессе электризации диэлектриков137
В.Н. Арустамов, Х.Б. Ашуров, И.Х. Худайкулов, Б.Р. Кахрамо-
нов. Процесс очистки поверхности образца ионами плазмы тле-
щего разряда и нанесение покрытия в одном технологическом
цикле
В.Н. Арустамов, Х.Б. Ашуров, И.Х. Худайкулов, Б.Р. Кахрамо-
нов. Влияние температуры катода на трансформацию ионно-
плазменных процессов катодной области вакуумной дуги139
В.Н. Арустамов, Х.Б.Ашуров, И.Х. Худайкулов, Б.Р. Кахрамо-
нов. К вопросу механизмов F-Т эмиссии электронов в катодном
пятне вакуумной дуги140
В.Н. Арустамов, Х.Б. Ашуров, В.М. Ротштейн, И.Х. Худойкулов.
Анализ процесса очистки поверхности ионнами плазмы тлеюще-
го разряда
В.Н. Арустамов, Х.Б.Ашуров, И.Х. Худайкулов, Б.Р. Кахрамо-
нов. К вопросу формирования направленного перемещения ка-
тодных пятен вакуумной дуги
Р.И. Баталов , Г.А. Новиков, Р.М. Баязитов, И.А. Файзрахманов,
К.Н. Галкин. Структурные, оптические и фотоэлектрические
свойства германия, гипердопированного примесью сурьмы143 У.Б. Шаропов. Исследование зонной структуры поверхности
У.Б. Шаронов. Исследование зоннои структуры поверхности ZnO методом электронной и оптической спектроскопии144
Ш.Т. Хожиев , И.О. Косимов, Б.Б. Гаибназаров, И.Х. Худайкулов.
Анализ структуры карбида кремния
3.А. Исаханов , Б.Е. Умирзаков, Р.М. Ёркулов, Р. Курбанов. Изу-
чение влияния имплантации ионов активных металлов на кри-
сталлическую и электронную структуру нитрида титана146
И.Р. Бекпулатов , Т.С. Камилов, Б.Д. Игамов, М.С. Лукасов, И.Х.
Турапов, А.И. Камардин. Получение пленок высшего силицида
марганца с высокими термоэлектрическими свойствами147
Б.Е. Умирзаков, Б.Е. З.А. Турсунметова, И.Р. Бекпулатов. Со-
став и структура поверхности кремния, подвергнутой различным
воздействиям
Ш.Я. Аматов, М.Ш. Ахмедов, Д.Т. Усманов. Масс
спектрометрические исследования десорбции и ионизации фулле
рена С ₆₀ в положительном режиме

33.	А.С. Шерметова, Ш.Дж. Ахунов, П.Г. Кахрамонова, Д.Т. Усманов
	Исследование выхода нейтральных атомов галлия при бомбарди-
	ровке кластерными ионами Ві150
34.	Б.К. Абдуллаева, Ш.Дж. Ахунов, П.Г. Кахрамонова, Д.Т. Усманов
	Исследование выхода вторичных ионов галлия методом вторич
	ной-ионной масс-спектрометрии151
35.	
	нанопленок CoSi ₂ на поверхности Si при твердофазном осажде
	нии
36.	М.Т. Нормурадов, Д.А. Нормуродов, Б.Е. Умирзаков, И.Р. Бекпу
	латов, К.Т. Довранов, Х.Т. Довранов. Получение двухслойной си
27	стемы силицид – кремний
37.	М.А. Кирсанов, С.Г. Климанов, М.А. Негодаев, А.С. Русецкий
	К.В. Шпаков, В.Н. Амосов, К.К. Артемьев, Д.А. Скопинцев. Ис-
	следование имплантации ионов дейтерия в поликристаллическую CVD-алмазную мишень
20	А. Алина, А.Л. Козловский. Исследование применения ионной
50.	модификации для повышения фотокаталитической активности
	ZnWO ₄ нанокомпозитов
39	А.А. Сычева, А.А. Соловых, Е.Н. Воронина. Особенности взаимо-
57.	действия ионов инертных газов низкой энергии с метильными
	группами на поверхности low-k диэлектриков
40.	Е.А. Воробьева, Д.О. Пешнина, А.А. Татаринцев, А.П. Евсеев
	А.А. Шемухин. Исследование полимерных нанокомпозитов с раз-
	личными углеродными наполнителями под действием электронно-
	го пучка
41.	М.Б. Юнусов, Р.М. Хуснутдинов, А.В. Мокшин. Исследование
	электронных и теплофизических свойств газовых гидратов мето
	дом ab-initio моделирования
42.	М. Алин, А.Л. Козловский. Исследование процессов полиморф
	ных превращений в ZrO ₂ керамиках при облучении тяжелыми
10	ионами
43.	Л.Ю. Немирович-Данченко , Л.А. Святкин, И.П.Чернов. Особен
	ности поведения водородной подсистемы в палладии при локаль
11	ном воздействии
44.	механосинтеза композитного материала-накопителя водорода на
	основе гидрида магния и углеродных нанотрубок
45	Б.Е. Умирзаков, З.А. Исаханов, Ж.Ш. Содикжанов, А.Ш.
15.	Усмонкулов. Изучение состава и электронной структуры пленок
	СdS имплантированной ионами кислорода
46.	Г.Х. Аллаярова, М. Жамуратова, Б.Е. Умирзаков. Масс-
	спектроскопия поверхности Si, имплантированного ионами
	0.+

3-й день, четверг, 26 мая

Секция V

РАДИАЦИОННЫЕ ЭФФЕКТЫ В НАНОСТРУКТУРАХ (НАНО-И БИО- ОБЪЕКТЫ)

$10^{00} - 11^{45}$, 3-е заседание

Председатели: П.А. Карасев, В.С. Черныш

10^{00} - 10^{15} Н.В. Новиков, Н.Г. Чеченин, А.А. Широкова. Распределе-
ния радиационных дефектов по глубине при ионном облучении крем-
ния
10 ¹⁵ -10 ³⁰ А.И. Титов, К.В. Карабешкин, А.И. Стручков , П.А. Карасев,
А.Ю. Азаров, Д.С. Гогова. Сравнение накопления радиационных по-
вреждений в Ga ₂ O ₃ и GaN
10 ³⁰ -10 ⁴⁵ В.В. Козловский , А.Э. Васильев, А.А. Лебедев, М.Е. Левин-
штейн, К.С. Давыдовская. Влияние температуры облучения электронами
на образование радиационных дефектов в карбиде кремния169
10 ⁴⁵ -11 ⁰⁰ Ю.В. Юрина , А.Н. Дудин, В.В. Нещименко, М.М. Михайлов.
Влияние флюенса электронов на концентрацию центров окраски в по-
лых частицах оксида алюминия170
11 ⁰⁰ -11 ¹⁵ E.M. Elsehly, A.P. Evseev, Yu.V. Balakshin, A.A. Shemuhin,
N.G. Chechenin. The influence of ion beam irradiation on the magnetic and
electrical properties of carbon nanotubes171
11 ¹⁵ -11 ³⁰ Moyano K., Reinoso C., Nuñez S., Costa C., Pérez B., Santacruz
C., Irribarra E. Modification of the resistance of a graphene layer by a 1-
10 kev electron beam
11 ³⁰ -11 ⁴⁵ Чиркин М.В., С.В. Устинов, Мишин В.Ю., Серебряков А.Е.
Определение неустойчивости газового разряда и эксплуатационной
надежности кольцевого гелий-неонового лазера в системе инерциаль-
ной навигации173

<u>11³⁰-11⁴⁵ Перерыв</u>

1145-1230 Обсуждение стендовых докладов

<u>Стендовые доклады «Радиационные эффекты в наноструктурах (нано- и био- объекты)»</u>

Председатели: В.П. Попов, И.И. Ташлыкова-Бушкевич

1.	А. Курахмедов, А.Л. Козловский . Определение эффективности допирования оксидом магния ZrO ₂ керамик на повышение радиа-
	ционной стойкости
2.	Р. Рспаев, А.Л. Козловский . Изучение радиационной стойкости
۷.	СеО ₂ микрокомпозитов модифицированных иттрием175
3.	Б. Абышев, А.Л. Козловский. Исследование процессов газового
	распухания в Li ₂ ZrO ₃ керамиках при облучении ионами гелия
1	
4.	Б. Абышев, А.Л. Козловский. Влияние двухфазного состояния
	Li ₂ ZrO ₃ керамик на устойчивость к радиационным повреждени-
_	ям
5.	И.В. Сафронов , В.В. Углов, С.В. Злоцкий, Н.А. Степанюк, Д.В
	Есипенко. Свойства точечных дефектов и радиационная стой-
	кость CoCrFeNi и HfNbTiZr сплавов
6.	Ю.А. Данилов, Ю.А. Дудин, Р.Н. Крюков, В.П. Лесников, А.В
	Нежданов, Е.А. Питиримова, А.С. Ранавира. Свойства углерод-
	ных слоев, подвергнутых ионному облучению179
7.	А.Н. Дудин, В.В. Нещименко, Ли Чундун. Радиационная стой-
	кость двухслойных полых частиц SiO ₂ /ZnO при облучении прото-
	нами
8.	А.И. Камардин, А.А. Симонов, М.П. Парпиев. Радиационные
	дефекты при ионной и озоновой обработке семян хлопчатни-
	ка
9.	У.Б. Шаропов. Образование агрегатных центров на поверхности
	фторида лития при высокотемпературном отжиге182
10.	М.Н. Шипко, Т.П. Каминская, М.А. Степович, А.А. Вирюс, А.И
	Тихонов. О влиянии магнитоимпульсной обработки на структуру
	поверхности и магнитные свойства ленточных аморфных сплавов
	Fe(Ni, Cu)(SiB)
11	Д.В. Андреев, Г.Г. Бондаренко, В.В. Андреев, А.А. Столяров
	Изменение зарядового состояния МОП-структур с радиационно
	индуцированным зарядом при сильнополевой инжекции электро-
	нов
12	А.А. Кленин , А.Н. Олейник, А.С. Кубанкин, А.С. Чепурнов, М.А
12.	Кирсанов. Компактный генератор нейтронов
12	А.Ш. Раджабов, Д.Т. Усманов, С.С. Исхакова. Быстродействие и
13.	
	верхний придел линейного диапазона поверхностно-
1.4	ионизационных детекторов
14.	А.В. Носков, В.А. Шуршаков, В.И. Павленко, Н.И. Черкашина
	Д.С. Романюк. Исследование альбедо нейтронов в композитном
	107

15.	С.В. Блажевич, О.Ю. Шевчук, А.Э. Федосеев, А.В. Носков. О
	влиянии параметров мишени и электронного пучка на ДПИ и
	ПРИ188
16.	В.А. Андрианов, А.Л. Тригуб. Об изучении радиационных де-
	фектов методом EXAFS
17.	М.А. Негодаев, А.С. Русецкий, К.В. Шпаков, В.Н. Амосов, К.К.
	Артемьев, С.А. Мещанинов, Д.А. Скопинцев. Исследование зави-
	симости выхода нейтронов и протонов DD-реакции из Ti и CVD-
	алмаза от угла поворота мишени190
18.	
	Киданова, Р.М. Нажмудинов. Параметрическое рентгеновское из-
	лучение из металлических нанопорошков191
19.	А.В. Хлюстова, Н.А. Сироткин, А.В. Агафонов, М.А. Степович,
	М.Н. Шипко. О динамике развития и результатах действия элек-
	трического разряда в водной среде192
20.	Б.Ш. Касимов, Ш.Дж.Ахунов, Д.Т. Усманов. Исследование мо-
	номолекулярных распадов кокаина методом поверхностной иони-
	зации
21.	Д.А. Радева, О.М. Марченко, А.Д. Шпорин, Ю.В. Балакшин, А.П.
	Евсеев, А.А. Шемухин. Влияние ионного облучения на структу-
	ру, оптические и электрофизические свойства пористого крем-
	ния
22.	
	Воробьева, А.А. Шемухин. Исследование влияния радиационно-
	индуцированных дефектов на структуру и электрофизические
	свойства углеродных нанотрубок195
23.	А.Е. Иешкин, Д.С. Киреев, Б.Р. Сенатулин, Е.А. Скрылева. Рас-
	пыление полупроводников АЗВ5 газовыми кластерными иона-
	ми
24.	Д.В. Широкорад, Г.В. Корнич , С.Г. Буга. Кинетика структурных
	изменений янусоподобных кластеров под действием частиц Ar1 и
	Ar13 ультранизких энергий197
25.	1 7 7 1 1
	деления компонент сплавов в катодном пятне вакуумной дуговой
	плазмы
26.	С.В. Блажевич, А.В. Носков, А.Э. Федосеев. Влияние многократ-
	ного рассеяния на дифрагированное переходное излучение199
27.	A.V. Shchagin . About calibration of dark matter and neutrino detec-
	tors by remote controlled neutron source
28.	Е.А. Воробьева, Н.А. Иванова, Д.Д. Спасов, С.М. Никитин, Н.Г.
	Чеченин. Углеродные нанотрубки для топливных элементов201

Секция І

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ВЗАИМОДЕЙСТВИЯ УСКОРЕННЫХ ЧАСТИЦ С ВЕЩЕСТВОМ

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ УГЛЕРОДНЫХ МАТЕРИАЛОВ

Н.Н. Андрианова¹⁾, А.М. Борисов¹⁾, Е.С. Машкова²⁾, М.А. Овчинников²⁾

¹⁾ МАИ (НИУ), Москва, Россия ²⁾ НИИЯФ МГУ, Москва, Россия

Ионное, электронное и нейтронное облучение конструкционных углеродных материалов (стеклоуглеродов, графитов, углеродных волокон и композитов) приводит к значительным изменениям их структуры и свойств в зависимости от температуры эксплуатации — от комнатной до порядка тысячи градусов в атомных реакторах и установках термоядерного синтеза. Актуальными являются задачи *in-situ* мониторинга радиационно-индуцированных структурных изменений. В работе для случая ионного облучения обобщаются и анализируются возможности мониторинга структурных изменений с помощью регистрации температурных зависимостей коэффициента $\gamma(T)$ ионно-электронной эмиссии. Приводятся и обосновываются методики экспериментального определения температур динамического отжига радиационных нарушений, температурных интервалов существования различных нано- и микроструктур углерода, образующихся при высоких флюенсах облучения. Интерпретация температурных зависимостей $\gamma(T)$ проводится в рамках теории Парилиса-Кишеневского, согласно которой [1]

$$\gamma = n\sigma\lambda W \left[1 - \frac{\lambda}{R\cos\theta} \left(1 - \exp\left(-\frac{R\cos\theta}{\lambda} \right) \right) \right] / \cos\theta,$$

где n — атомная плотность, λ — глубина выхода вторичных электронов, W — вероятность выхода вторичных электронов, R — расстояние, на котором ион способен производить ионизацию атомов, θ — угол падения ионов, σ - сечение ионизации в парных атомных столкновениях.

ЛИТЕРАТУРА

1. Borisov A.M., Mashkova E.S., Nemov A.S., Parilis E.S. Nuclear Instruments and Methods in Physics Research B. 2005. V.230. P. 443-448.

KUMAKHOV... FROM CRYSTAL UNDULATORS TO CAPILLARY GUIDES /Профессор М.А. Кумахов и его вклад в физику взаимодействия излучений с веществом/

S.B. Dabagov

INFN Laboratori Nazionali di Frascati, Frascati (RM), Italy * e-mail: sultan.dabagov@lnf.infn.it

This report is dedicated to the memory of Professor Muradin Kumakhov, the worldwide known scientists for his pioneering works in the physics of beams and radiations interactions in crystals and capillary structures, and for his valuable contribution in the development of novel techniques based on that physics as well.

ЦИКЛОТРОННЫЙ ЦЕНТР ЯДЕРНОЙ МЕДИЦИНЫ УрФУ

С.С.Зырянов 1,* , Ф.Г.Нешов $^{1)}$

1) Уральский федеральный университет, Екатеринбург, Россия *) e-mail: sszyrianov@urfu.ru

В Уральском федеральном университете имени первого Президента России Б.Н. Ельцина запущен циклотрон TR-24. В настоящий момент это первый работающий циклотрон фирмы ACSI в России.

Рис.1 Циклотрон TR-24. Общий вид.

Основные параметры ускорителя: ток пучка протонов до 300мкА, энергия протонов 18-24 МэВ. Для вывода пучка протонов смонтированы два канала: первый – с мишенной станцией для установки жидкостных и газовых мишеней, второй – научно-исследовательский, с возможностью установки твердотельных образцов. На ускорителе ТR-24 возможно производство широкого спектра ПЭТ, ОФЭКТ изотопов. Инновационно-внедренческий центр «Циклотронный центр ядерной медицины», созданный на его основе, предназначен для решения образовательных, научно-исследовательских, производственных задач, и в настоящий момент проходит этап лицензирования.

УСКОРИТЕЛЬНЫЙ КОМПЛЕКС МГУ

А.А. Шемухин, В.С. Черныш, В.И. Шведунов, Д.О. Еременко, Ю.В. Балакшин, А.В. Назаров, А.П. Евсеев, Н.Г. Чеченин, Д.К. Миннебаев

Московский государственный университет имени М.В. Ломоносова, Москва, Россия *e-mail: shemuhin@gmail.com

Современные ионные и электронные ускорители — это неотъемлемая часть оборудования большинства мировых фабрик по производству микроэлектроники и чипов, а также передовых исследовательских лабораторий, которые работают в области микро- и наноэлектроники. Уникальное научное оборудование Ускорительного комплекса МГУ позволяет выполнять задачи, связанные, например, с модификацией и исследованием наноразмерных материалов, формированием нанорельефа, наработкой изотопов.

В Университете существует целый ряд ускорителей для проведения экспериментальных работ, в которых задействованы пучки заряженных частиц в широком диапазоне энергий:

- от единиц эВ до 50 МэВ для электронных пучков;
- от единиц эВ до 500 кэВ для однозарядных ионов;
- до 30 МэВ для легких ионов;
- от 1 до 15 кэВ для кластерных ионов.

Ускорительная база МГУ активно использовалась при работе над рядом открытий, таких как каналирование ионов и электронов — «эффект теней», фотоядерные реакции, эффект «flux-peaking», эффект когерентного излучения каналированных электронов («эффект Кумахова») и различных видов переходного излучения, эффекты ионно-пучковой модификации перспективных материалов и т.д.

В докладе обобщен опыт разработки и эксплуатации ускорителей в МГУ для решения современных фундаментальных и прикладных научных задач.

Секция **II**

ВЗАИМОДЕЙСТВИЕ ИОНОВ С ПОВЕРХНОСТЬЮ И НАНОСТРУКТУРАМИ (РАССЕЯНИЕ, РАСПЫЛЕНИЕ, НАНОСТРУКТУРИРОВАНИЕ И ЭМИССИЯ ВТОРИЧНЫХ ЧАСТИЦ)

МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА РАСПЫЛЕНИЯ ПРИ ОБЛУЧЕНИИ ГАЗОВЫМИ КЛАСТЕРНЫМИ ИОНАМИ

А.Д. Завильгельский ^{1,2,*}, А.В. Назаров², А.Е. Иешкин ¹, В.С. Черныш ¹

¹⁾ Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физической электроники, Россия, Москва
²⁾ Московский государственный университет имени М.В. Ломоносова, НИИЯФ им. Д.В. Скобельцына, Россия, Москва
*) e-mail: zavilgelsky.ad15@physics.msu.ru

С помощью моделирования методом молекулярной динамики исследованы температурные зависимости коэффициента распыления меди кластерными ионами аргона в диапазоне температур от 300 К до 1100 К (0.8 температуры плавления) [1]. Кластеры аргона с энергией 10 кэВ имели размеры от 50 до 500 атомов. Обнаружено, что с ростом размера кластера, то есть с уменьшением удельной энергии его атомов, зависимость коэффициента распыления от температуры становится более выраженной. Проведено сравнение результатов с молелью тепловых пиков.

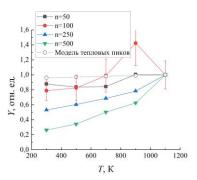


Рис.1 Коэффициенты распыления Y меди кластерами Ar_n при различных температурах.

Исследование выполнено при поддержке Российского научного фонда, грант № 21-79-10224.

Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова [2].

- 1. Иешкин А.Е., Завильгельский А.Д., Беляев М.Е., Назаров А.В. // Численное моделирование Вестник МГУ. Физика, астрономия (год публикации 2022).
- 2. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A. et al. // Supercomput. Front. Innov. 2019. 6, № 2, P. 4–11.

ЗАРОЖДЕНИЕ НАНОРИПЛОВ НА ПОВЕРХНОСТИ КРЕМНИЯ ПРИ ОБЛУЧЕНИИ ГАЗОВЫМИ КЛАСТЕРНЫМИ ИОНАМИ

Д.С. Киреев¹⁾, А.Е. Иешкин¹⁾, Ю.А. Ермаков²⁾, В.С. Черныш^{1,2)}

 $^{1)}$ МГУ им. М.В. Ломоносова, физический факультет, Москва, Россия $^{2)}$ НИИЯФ им. Д.В. Скобельцина, МГУ им. М.В. Ломоносова, Москва, Россия

Известно, что под действием наклонного ионного облучения на поверхности твердых материалов образуется волнообразный рельеф нанометрового масштаба, т.н. рипплы [1]. Подобный рельеф может находить свое применение для создания дифракционных решеток или разного рода сенсоров, работающих за счет явления поверхностного плазмонного резонанса. Особенно актуальным становятся поверхности, имеющие упорядоченные наноструктуры для Рамановской спектроскопии. Этот метод диагностики поверхности, использующий комбинационное рассеяние с усилением поверхности (SERS) [2]. Чувствительность данного метода напрямую зависит от параметров рельефа поверхности. Поэтому становится актуальным изучение процессов, лежащих в основе формирования рельефа для возможности контролировать его параметры.

В данной работе описан рельеф поверхности поликристаллического кремния, образующийся под действием наклонного падения кластерных ионов Ar₈₀₀⁺ 12 к_ЭВ при различных углах падения пучка относительно нормали к поверхности. Показано влияние ионной дозы облучения на форму и размер, образующихся на поверхности «рипплов». Облученная поверхность исследовалась с помощью СЭМ. При малых флуенсах на поверхности хаотично образуются одиночные выступы, высота которых достигает десятков нанометров. По мере увеличения ионного флуенса количество выступов растет и происходит их объединение в группы вдоль линии фронта, образующегося волнообразного рельефа. В дальнейшем поверхностная миграция, переосаждение распыленного вещества и зависимость коэффициента распыления от локальной кривизны поверхности приводят к тому, что форма выступов эволюционирует к устойчивому состоянию. Один из склонов ориентирован перпендикулярно ионному пучку, а другой – параллельно. Дальнейшее увеличение флуенса приводит к росту амплитуды и уменьшению длины волны, образовавшегося волнообразного рельефа.

Исследование выполнено за счет гранта Российского научного фонда (проект № 21-79-10224).

- R. Cuerno, J.S. Kim // J. Appl. Phys. 128 (2020).
- S. Zhao, Y. Zhao, Y. Ran, H. Lu, Q. Guo, C. Gao, Y. Zhao, W. Yan, Z. Jiang, H. Wu, D. Zhang, Z. Wang // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 472 (2020) 24– 31

НАНОСТРУКТУРИРОВАНИЕ ПОВЕРХНОСТИ МОНОКРИСТАЛЛОВ КТР ИОННО-КЛАСТЕРНЫМ ПУЧКОМ АРГОНА

Н.Г. Коробейщиков^{1,*)}, И.В. Николаев¹⁾, М.А. Роенко¹⁾

1) Новосибирский государственный университет, Новосибирск, Россия

*) e-mail: korobei@ci.nsu.ru

В докладе представлены результаты экспериментального исследования наноструктурирования поверхности нелинейных монокристаллов титанилфосфата калия (КТР, КТіОРО4) путем бомбардировки кластерными ионами аргона [1]. Эксперименты проводились на экспериментальном стенде КЛИУС [2] при различных углах падения на мишень (от 0° до 70°) и различных удельных энергиях кластерных ионов E/N=110 и 10 эВ/атом. С использованием функций спектральной плотности мощности шероховатости (PSD) определены характеристики формируемых наноструктур (амплитуда и период) от условий обработки. Установлены коэффициенты распыления и скорости травления поверхности монокристалла КТР кластерными ионами аргона.

Работа выполнена при финансовой поддержке гранта Министерства высшего образования и науки РФ FSUS-2020-0039.

- 1. N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko // Technical Physics Letters, 2019, Vol. 45, No.3, P. 274–277.
- 2. N.G. Korobeishchikov, I.V. Nikolaev, M.A. Roenko // Nucl. Instrum. Meth. Phys. Res. B, 2019, Vol. 438, P. 1-5.

ПОЛИМЕРИЗАЦИЯ ФУЛЛЕРЕНА ПРИ ОБЛУЧЕНИИ УСКОРЕННЫМИ ИОНАМИ C60

В.Е. Пуха 1* , Г.В. Нечаев 1 , Е.Н. Кабачков 1 , П.А. Карасев 2 , Е.Д. Федоренко 2 , И.И. Ходос 3

¹⁾ ИПХФ РАН, Черноголовка, Россия
 ¹⁾ СПбПУ Петра Великого, С.-Петербург, Россия
 ³⁾ИПТМ РАН, Черноголовка, Россия
 *) e-mail: pve@icp.ac.ru

Облучение фуллеренового покрытия во время роста ускоренными ионами С₆₀ формирует твердый (Н>20 ГПа) полимер, который обладает уникальным свойством «самозалечивание» повреждений /1/. По данным авторов работы, для энергии ионов 5 кэВ эффект проявляется при концентрации ионов в молекулярном пучке в пределах 1-15%. Влияние энергии пучка и температуры подложки Тs на структуру полимера и эффект самозалечивания не исследованы.

В докладе приводятся данные по формированию структуры покрытия при концентрации ионной компоненты в молекулярном пучке 5% и энергии ионов 3, 5 и 7 кэВ и Тѕ от комнатной до 250°С. Структура покрытий исследовалась методами просвечивающей электронной микроскопии (ПЭМ) и комбинационного рассеяния.

Показано, что при энергии ионов 3 и 5 кэВ во во всем температурном диапазоне формируется ГЦК структура с увеличенными межплоскостными расстояниями. Это позволяет предположить, что часть молекул разрушается и полимеризация молекул происходит присоединением свободного атома углерода между молекулами. Увеличение энергии ионов до 7 кэВ приводит к амофизации покрытия. Эффект «самозалечиваения» в этом случае также наблюдается. Исследование выполнено при финансовой поддержке РФФИ и НИФ в рамках научного проекта № 19-58-51016.

ЛИТЕРАТУРА

1. O.V. Penkov, V.E. Pukha, A.Y. Devizenko, H.J. Kim, D.E Kim //Nano letters. 2014, 14, 2536.

ОПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА ДЛЯ СИСТЕМЫ H-Au ИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

П.Ю. Бабенко, А.Н. Зиновьев*, В.С. Михайлов, Д.С. Тенсин, А.П. Шергин

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия * e-mail: zinoviev@inprof.ioffe.ru

Предложена методика определения параметров потенциала межатомного взаимодействия в случае рассеяния частиц твердым телом. В качестве базисного взят потенциал типа Зиновьева [1]. Для определения параметров потенциала используется описание экспериментальных энергетических спектров рассеянных частиц [2] для разных углов рассеяния β относительно нормали с помощью нашего кода [3].

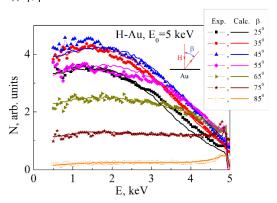


Рис. 1 Энергетические спектры рассеянных протонов.

Из рис. 1 видно, что варьированием параметров потенциала удается добиться согласия эксперимента с расчетом с точностью 7%. Полученные потенциалы характеризуются сильным уменьшением константы экранирования по сравнению с столкновениями в газовой фазе.

- 1. Zinoviev A.N. // NIMB. 2011. v.269. p.829.
- 2. Verbeek H. et al. // J. Appl. Phys. 1980. v.51. p.1783.
- 3. Мелузова Д.С. и др. // Поверхность. 2019. N4. c.74.

ЗАВИСИМОСТЬ ВЕЛИЧИНЫ ЭЛЕКТРОННЫХ ТОРМОЗНЫХ ПОТЕРЬ ОТ СПОСОБА ИЗМЕРЕНИЯ

А.Н. Зиновьев*, П.Ю. Бабенко

ФТИ им. А.Ф. Иоффе, С.-Петербург, Россия * e-mail: zinoviev@inprof.ioffe.ru

Показано, что различие результатов измерений электронных тормозных потерь энергии dE/dx методом обратного рассеяния и методом прохождения тонких пленок связано с отклонением траектории частиц при низких энергиях от прямолинейного пролета.

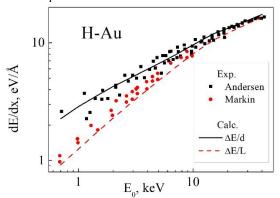


Рис.1 Неупругая потеря энергии в зависимости от начальной энергии Е₀.

С помощью нашего кода [1] мы определили среднюю длину траектории L в пленке из Au толщиной d=200 Å и величину потери энергии $\Delta E=E_0-E_s$, где E_s - средняя энергия вылетевших частиц.

На рис. 1 приведены экспериментальные данные dE/dx при прохождении пленки 200 Å [2] и в случае обратного рассеяния [3]. Линии — наш расчет с использованием потерь [3]. Расчетное отношение ΔE/d дает dE/dx из работы [2], а отношение ΔE/L значения dE/dx из работы [3].

- 1. Мелузова Д.С. и др. // Поверхность. 2019. №4. с.74.
- 2. Andersen H.H. et al. // NIMB. 2002. v.194. p.217.
- 3. Markin S.N. et al. // PRB. 2008. v.78. p.195122.

РАСЧЕТ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ ЛЁГКИХ ИОНОВ, ОТРАЖЕННЫХ ОТ ТВЕРДЫХ ТЕЛ, В МАЛОУГЛОВОЙ МОДЕЛИ МЕТОДА ИНВАРИАНТНОГО ПОГРУЖЕНИЯ

В.П. Афанасьев 1,* , Л.Г. Лобанова 1 , В.И. Шульга $^{2)}$

1) НИУ «МЭИ», Москва, Россия
2) НИИЯФ МГУ имени М.В. Ломоносова, Москва, Россия
*) e-mail: v.af@mail.ru

Для расчета энергетических спектров отраженных электронов успешно применяется аналитическая модель [1,2], позволяющая найти распределение отраженных атомных частиц по длине пробега в мишени – Path Length Distribution Function (PLDF), определяемое только процессами упругого рассеяния атомных частиц в твердом теле. Этот метод основан на решении граничных задач для уравнения переноса в малоугловом приближении:

$$x(\pi)/x(0) \ll 1,\tag{1}$$

где $x(\theta)$ – нормированное на единицу сечение упругого рассеяния частицы на угол θ . Следует отметить, что для ионов неравенство (1) справедливо в более широком интервале энергий, чем для электронов.

Уравнение, описывающее плотность потока частиц, отразившихся от мишени, пройдя в ней путь s, для ионов и электронов различается лишь видом сечения упругого рассеяния. Для апробации аналитической методики для задач рассеяния лёгких ионов в работе проведено сравнение расчетов с результатами МК моделирования.

Наличие выверенного решения упругой задачи станет надежной базой для определения и верификации таких параметров неупругого рассеяния, как stopping power и параметра флуктуаций или straggling.

- 1. F. Salvat-Pujol, W.S.M. Werner, // Phys. Rev. B, 2011, 83, 19, 195416.
- 2. V.P. Afanas'ev, D.S. Efremenko, P.S. Kaplya, // J. Electron. Spectrosc. Relat. Phenom., 2016, 210, 16–29.

ОСОБЕННОСТИ ЭЛЕКТРОННОГО ОБМЕНА С ПОВЕРХНОСТЯМИ, СОДЕРЖАЩИМИ ДЕФЕКТЫ

И.К. Гайнуллин 1,* , Н.Е. Климов $^{1)}$

1) Физический факультет МГУ имени М.В. Ломоносова, Москва, Россия
*) e-mail: Ivan.Gainullin@physics.msu.ru

Был изучен электронный обмен с поверхностями, содержащими дефекты (на примере атомных ступеней). Для начала рассматривался статический случай, когда ион Н фиксирован над поверхностью Al(001). Атомная ступень высотой 7 ат. ед. располагалась вдоль оси У для координаты х=0. Для отрицательных значений X граница поверхности соответствовала z = 7 ад. ед., для положительных z=0 ад. ед. Изучались следующие характеристики резонансного электронного обмена: эволюция электронной плотности, ширина уровня Г, а также зависимость заселенности Р от времени. Во-первых, наблюдается экспоненциальное уменьшение заселенности атома со временем. Во-вторых, крутизна экспоненты увеличивается в зависимости от расстояния ион-поверхность. Ширина уровня уменьшается при увеличении расстояния между ионом и поверхностью, что свидетельствует об уменьшении эффективности обмена с увеличением расстояния. Также для х = -4 ат. ед., т.е. когда ион расположен над «высокой» областью поверхности, значение ширины уровня значительно выше, чем при х = -4 ат. ед., т.е. когда ион расположен над «низкой» областью поверхности. Таким образом, при теоретико-расчетном изучении электронного обмена с дефектными поверхностями, важно учитывать траекторию рассеяния иона, и латеральное положение точки соударения с поверхностью относительно поверхностного дефекта. Напомним, что для однородных поверхностей вероятность электронного перехода зависит от энергии и угла рассеяния атомной частицы, но не зависит от латерального положения точки соударения с поверхностью.

О РАВНОВЕСНЫХ КОНФИГУРАЦИЯХ ЗАРЯЖЕННЫХ ИОНОВ В ПЛАНАРНЫХ СИСТЕМАХ С КРУГОВОЙ СИММЕТРИЕЙ

Э. Г. Никонов^{1,2, *)}, Р.Г. Назмитдинов^{1,2)}, П.И. Глуховцев¹⁾

¹⁾ Объединённый институт ядерных исследований, г. Дубна РФ
²⁾ Государственный университет «Дубна», г. Дубна РФ
*) e.nikonov@jinr.ru

Проблема нахождения равновесных конфигураций одноименно заряженных частиц (ионов), индуцированных внешними электростатическими полями в планарных системах, представляет огромный интерес для нужд нанотехнологии. Решение данной проблемы открывает, в частности, перспективные пути бесконтактного формирования различных электронных схем при создании дисплеев нового поколения. В работах /1,2/ предложен эффективный подход для поиска равновесных конфигураций для одноименно заряженных частиц, запертых потенциалами с круговой симметрией и бесконечными стенками. В данной работе предложен численный метод исследования вышеуказанной проблемы, когда в качестве начальных условий используются решения нелинейных уравнений подхода /2/. Наши результаты наглядно демонстрируют эффективность использования метода классической молекулярной динамики (МД) по сравнению с алгоритмами, основанными на методах Монте-Карло и глобальной оптимизации. Предложенный метод позволяет повысить на несколько порядков скорость достижения устойчивой конфигурации с минимальной энергией для произвольно выбранного числа частиц в рассматриваемой системе по сравнению с классическим методом МД.

- 1.M. Cerkaski, R. G. Nazmitdinov, and A. Puente // Phys. Rev. E 91, 032312 (2015).
- 2.R. G. Nazmitdinov, A. Puente, M. Cerkaski and M. Pons // Phys. Rev. E 95, 042603 (2017).

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ГРАФЕНОВОГО СЛОЯ В МЕДИ НА РАСПЫЛЕНИЕ ПРИ ОБЛУЧЕНИИ ТЯЖЕЛЫМИ ИОНАМИ

Б. Батгэрэл^{1,3)}, М.Н. Мирзаев¹⁾, Е.П.Попов¹⁾, И.В. Пузынин¹⁾, Т.П. Пузынина¹⁾, И.Г. Христов²⁾, Р.Д. Христова²⁾, З.К. Тухлиев¹⁾, З.А. Шарипов¹⁾

¹⁾Объединенный институт ядерных исследований, Дубна, Россия
 ²⁾ Софийский университет "Св. Климент Охридски", София, Болгария
 ³⁾Монгольский государственный университет науки и технологии, Улан-Батор, Монголия

В работе методом молекулярной динамики проведено исследование процессов взаимодействия ионов меди с энергиями из диапазона 10 эВ-10кэВ с мишенью из меди с графеновым слоем на поверхности и внутри меди [1,2]. Известно, что, графен обладает большой механической жёсткостью и высокой теплопроводностью. Большой теоретический интерес представляет влияние графеновых слоев в различных материалах на их радиационную стойкость при различных видах облучения. В работе получены результаты численного моделирования: пороговая плотность энергии, приводящие к разрушению графенового слоя и структурным изменениям в облучаемой мишени в зависимости от энергии иона. Проведена классификация возникающих структурных изменений в мишени под действием облучения ионами меди.

Исследование выполнено при финансовой поддержке РФФИ и МОКНСМ в рамках научного проекта №20-51-44001 и Полномочного представителя Республики Болгарии в ОИЯИ.

- 1. B.Batgerel, S.Dimova, I.Puzynin et al. //EPJ Web Conf., 173 (2018) 06001.
- 2. Batgerel B., I.Puzynin, T.Puzynina et al. //Lecture Notes in Computer Science, vol 11189. (2019)

АНАЛИЗ НАНОРАЗМЕРНЫХ МЕТАЛЛИЧЕСКИХ СЛОЕВ ZR/NB ПОСЛЕ ПРОТОННОГО ОБЛУЧЕНИЯ

А.Д. Ломыгин¹⁾, Р.С. Лаптев¹⁾, А.Г. Кобец²⁾, К.Siemek²⁾

¹⁾Национальный исследовательский Томский политехнический университет, Томск, Россия

2)Объединенный институт ядерных исследований, Дубна, Россия

Многослойные функционально-градиентные покрытия с различными кристаллическими структурами рассматриваются как потенциальные материалы с высокой стойкостью по отношению к радиационным дефектам, поскольку на интерфейсах происходит рекомбинация дефектов вакансионного типа и межузельных атомов. В процессе исследования проводилось протонное облучение наноразмерных металлических слоев Zr/Nb с различной толщиной индивидуальных слоев с дозой $3,4\cdot 10^{15}$ ион/см² [1, 2]. После протонного облучения HMC Zr/Nb не приводит к росту S параметра, что свидетельствовало бы об образовании дефектов. Изменение параметров формы ДУАЛ находятся в пределах экспериментальной погрешности до и после облучения.

Исследование выполнено за счет гранта Российского научного фонда (проект № 20-79-10343).

ЛИТЕРАТУРА

1.Laptev R., Lomygin A., Krotkevich D., Syrtanov M., Kashkarov E., Bordulev Y., Seimek K., Kobets A. Effect of Proton Irradiation on the Defect Evolution of Zr/Nb Nanoscale Multilayers //Metals. $-2020.-Vol.\ 10.-Np.\ 4.-$ Article number: $535-P.\ 1-12.$

2.Laptev R., Svyatkin L., Krotkevich D., Stepanova E., Pushilina N., Lomygin A., Ognev S., Seimek K., Uglov V. First-Principles Calculations and Experimental Study of H+-Irradiated Zr/Nb Nanoscale Multilayer System //Metals. -2021.-Vol. $11.-N_{\odot}.4.-$ Article number: 627-P. 1-17.

ЭНЕРГО-СИЛОВЫЕ ПРОЦЕССЫ АВТОУПРАВЛЕНИЯ МЕСТОПОЛОЖЕНИЕМ ДУГОВОГО РАЗРЯДА ПРИ ЕГО ЗАЖИГАНИИ

С.С. Волков 1,3,* , С.В. Николин 2 , М.В. Чиркин 3

¹⁾ Рязанское высшее воздушно-десантное командное училище, Рязань, Россия. *) e-mail: volkovstst@mail.ru ²⁾ AO «Плазма». Рязань. Россия

3) Рязанский государственный радиотехнический университет, Рязань, Россия

Целью данной работы являлось исследование энерго - силовых взаимодействий плазмы сильноточного дугового разряда с электродами прибора для управления местоположением разряда. Дуговая газоразрядная плазма наряду с большими полезными мошностями и плотностями энергии неизбежно изменяет состояние поверхностей электродов, условия управления разрядом, особенно условия зажигания разряда, что ограничивает ресурс работы приборов с дуговым разрядом. Требование снижения потенциала зажигания разряда усложняет вопрос обеспечения устойчивости материала катода прибора. Совмещение больших энерговыделений и повторяемости условий низкоэнергетического зажигания дугового разряда возможно при отводе развивающегося разряда от места его возникновения /1/. Для управления началом зажигания разряда, ходом его развития, условиями сохранения исходного состояния места зажигания, скоростью перемещения развивающегося разряда и устойчивого выделения энергии разряда в приборе эти процессы рассмотрены по отдельности, и протекание их разделено в приборе по времени и по положению относительно электродов. Основными условиями повышения ресурса работы прибора являются низкоэнергетическое зажигание и устойчивость электродов при горении разряда.

ЛИТЕРАТУРА

1. Гайнутдинов К.С., Николин С.В., Николюкин Ю.В., Самородов В.Г. Коммутирующее устройство. Патент РФ №2366051 от 07.06.2008.

ИССЛЕДОВАНИЕ ИОННО-ФОТОННОЙ ЭМИССИИ ПРИ БОМБАРДИРОВКЕ ТІ МИШЕНИ КЛАСТЕРНЫМИ И МНОГОЗАРЯДНЫМИ ИОНАМИ

Ш.Дж. Ахунов*, Д.Т. Усманов, Ш.М. Ахмедов

Институт Ионно-плазменных и лазерных технологий, AH РУз,

Ташкент, Узбекистан *e-mail: a.shovkatjon@mail.ru

В данной работе изучена особенности вторично-эмиссионных явлений и нелинейных каскадов при кластерной бомбардировке. Проведено экспериментальные исследования эмиссии возбужденных атомов, релаксация которых приводит к излучению фотонов или ионно-фотонной эмиссии (ИФЭ) [1,2].

В процессе исследования взаимодействии кластерных ионов с твердым телом использовались две установки, которые были модернизированы и дополнены системой измерения ионно-фотонной эмиссии, а также оснащенной монохроматором, источником ионов ксенона и ускорителем ионов до 40 кэВ. Исследованы оптические спектры ИФЭ титана. Бомбардировка Ті мишени ионами Xe^+ производилась по нормали к поверхности. Измерения интегрального по спектру выхода ИФЭ при бомбардировке Ті мишени кластерными ионами Bim^+ (m=1-4) проводились в диапазоне энергий 2-12 кэВ. Определен неаддитивный рост интегральных коэффициентов ионно-фотонной эмиссии с увеличением количества атомов и энергии бомбардирующих ионов. Это предположительно связан с неаддитивностью коэффициента распыления. Кроме этого на процесс возбуждения распыленных атомов определено влияние режима тепловых пиков при кластерной бомбардировке

- 1. Поп С.С., Белых С.Ф. Дробнич В.Г. Ферлегер В.Х. Ионно-фотонная эмиссия металлов. Ташкент, Фан, 1989. 200 с.
- 2. G.Gillen, A.Fahey // Appl. Surf. Sci. 203 (2003) p. 209.

МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ ПРОЦЕССОВ, ВОЗНИКАЮЩИХ В МАТЕРИАЛАХ ПОД ДЕЙСТВИЕМ ЛАЗЕРНЫХ ИМПУЛЬСОВ В РАМКАХ ГИПЕРБОЛИЧЕСКОЙ МОДЕЛИ ТЕРМИЧЕСКОГО ПИКА

Амирханов И.В., Сархадов И, З.К. Тухлиев

Объединенный институт ядерных исследований, Дубна, Россия

В настоящей работе предложена модификация модели термического пика, базирующаяся на системе двух связанных гиперболических уравнений теплопроводности.

Действие лазера на образец, учтено через функцию источника, которая выбрана в виде двойного фемтосекундного лазерного импульса. В гиперболическом уравнении в отличие от параболического, присутствуют дополнительные параметры, которые характеризуют времена релаксации потока тепла в электронном газе и кристаллической решетки [1].

Проведены численные исследования решений параболического и гиперболического уравнений модели термического пика при одинаковых физических параметрах и сравнительный анализ полученных результатов.

Работа выполнена при финансовой поддержке РФФИ и МОКНСМ в рамках научного проекта №20-51-44001

ЛИТЕРАТУРА

1. I.V. Amirkhanov, N.R. Sarker, I. Sarkhadov. Numerical simulation of thermal processes occurring in materials under the action of femtosecond laser pulses. // Discrete and Continuous Models and Applied Computational Science Vol. 29, N1, 2021y., pp. 5-13.

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОНЕЧНОЙ ТОЛІЦИНЫ ОБРАЗЦА НА ЛАЗЕРНОЙ АБЛЯЦИИ МАТЕРИАЛОВ

 1 И.В. Амирханов, 1 И. Сархадов, 1 З.К. Тухлиев, 2 Х. Гафуров

 1 Объединенный институт ядерных исследований, Россия 2 Худжандский государственный университет имени академика Бободжана Гафурова, Таджикистан

В работе [1] были проведены численные моделирования лазерной абляции материалов, возникающей под действием ультракоротких лазерных импульсов в полуограниченных образцах.

В настоящей работе проведено аналогичное численное исследование в образцах конечной толщины. Конечность толщины образца приводит к тому, что абляция материала происходит не только с первой границы, на которую падает лазер, но и со второй его границы. Путем перехода в движущейся системе координат, задача с движущими границами приведена к задаче с фиксированными границами.

Проведен сравнительный анализ полученных результатов с предыдущими результатами.

Работа выполнена при финансовой поддержке РФФИ и МОКНСМ в рамках научного проекта №20-51-44001

ЛИТЕРАТУРА

1. I.V. Amirkhanov, N.R. Sarker, I.Sarkhadov. Numerical modeling of laser ablation of materials. // Discrete & Continous Models & Applied Computational Science, ISSN:2658-4670, eISSN:2658-7149. Vol. 28, N4, 2020y., pp. 398-405.

ФОРМИРОВАНИЕ МНОГОСЛОЙНЫХ СТРУКТУР ИЗ ИОННО-МОЛЕКУЛЯРНОГО ПУЧКА С60

В.Е. Пуха 1* , А.А. Бельмесов 1 , П.А. Карасев 2 , Е.Д. Федоренко 2 , И.И. Ходос 3

¹⁾ ИПХФ РАН, Черноголовка, Россия
²⁾ СПбПУ Петра Великого, С.-Петербург, Россия
³⁾ИПТМ РАН, Черноголовка, Россия
*) e-mail: pve@icp.ac.ru

В докладе представлены результаты исследования закономерностей формирования углеродных покрытий на поверхности Ті и Si при последовательном осаждении из пучка ускоренных ионов и молекул С60 с содержанием молекулярной фракции 0 и 90%. В работах /1, 2/ показано, что в первом случае формируются алмазоподобные (АП) структуры, а во втором полимер на основе С₆₀ с уникальным свойством «самозалечивание» повреждений. Методами просвечивающей микроскопии (ПЭМ), комбинационного рассеяния (КР) и атомно-силовой микроскопии (АСМ) исследовано формирование многослойных структур при энергии ионов С60 5 кэВ при комнатной температуре. Анализ данных ПЭМ показал, что при формировании АП слоя на поверхности полимера возникает переходной слой с графитоподобной структурой. На картине микродифракции, кроме аморфного гало, наблюдается дополнительное отражение, соответствующее межплоскостным расстояниям (002) графита. На спектрах комбинационного рассеяния при уменьшении толщины слоя полимера менее 10 нм не обнаружено пиков от молекулярного фуллерена. Таким образом, в этом случае многослойная структура АП-полимер преобразуется в структуру АП-нанографит. Работа поддержана грантом РФФИ 19-58-51016.

- 1. O. V. Penkov, V.E. Pukha, E. N. Zubarev, S. S. Yoo, D. E. Kim, //Tribology International, 2013, 60, 127.
- 2. O. V. Penkov, V.E. Pukha, A.Y. Devizenko, H.J. Kim, D.E. Kim //Nano letters. 2014, 14, 2536.

ЭФФЕКТ МНОГОЗНАЧНОСТИ ПЕРЕФОКУСИРОВАННЫХ АТОМОВ, РАСПЫЛЕННЫХ С ПОВЕРХНОСТИ ГРАНИ (001) Ni ИОНАМИ Ar НИЗКОЙ ЭНЕРГИИ

А.И. Мусин¹⁾, В.Н. Самойлов²⁾

 $^{1)}$ Московский государственный областной университет, Москва, Россия $^{2)}$ МГУ им. М.В. Ломоносова, Москва, Россия

Исследована фокусировка атомов, распыленных с грани (001) Ni ионами Ar с энергией 200 эВ при 0 К. Расчеты выполнялись с помощью метода молекулярной динамики по модели /1/. Было рассчитано падение $\sim 10^6$ ионов. Угловое распределение распыленных атомов (с пятнами Венера) соответствует экспериментальным данным. Перефокусированные атомы составляют 36.2% всех распыленных атомов при 0 К в сравнении с 32.6% при 300 К. В /2/ было показано, что на стадии эмиссии происходит сильное перераспределение вылетающих атомов по углам и энергии. В настоящей работе исследовано обнаруженное ранее сужение распределения всех перефокусированных распыленных атомов по азимутальному углу в процессе эмиссии атомов. Была исследована многозначность сигнала перефокусированных атомов, распыленных в определенных интервалах энергии и полярного угла, по азимутальному углу ф и начальному азимутальному углу ϕ_0 . Полученные результаты в целом согласуются с результатами, полученными ранее в рамках упрощенной модели /3/.

- Kornich G.V., Betz G. // Nucl. Instrum. Methods Phys. Res. B., 1998, V. 143, № 4, p. 455-472.
- 2. Шпиньков В.И., Самойлов В.Н. // Поверхность, 2009, № 3, с. 73-79.
- Самойлов В.Н., Мусин А.И. // Известия РАН. Серия физическая, 2018, т. 82. №2. с. 171-176.

КИНЕТИКА ГЕТЕРОГЕННЫХ ПРОЦЕССОВ В ТЕРМОДЕСОРЬЦИОННОЙ ПОВЕРХНОСТНО-ИОНИЗАЦИОННОЙ СПЕКТРОМЕТРИИ АКТИВНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

А.Ш. Раджабов, Д.Т. Усманов, С.С. Исхакова, А.С. Халматов

Институт Ионно-плазменных и лазерных технологий имени У.А. Арифова АН РУ, Дурмон йули 33, 100125 Ташкент, Узбекистан, e-mail: a.radjabov0217@gmail.com

Исследованы зависимость формы, интенсивности и температуры максимума термодесорбционных спектров морфина, героина, папаверина, кодеина, тебаина и наркотина полученных при разных температурах (Т_Е) поверхностно-ионизационного эмиттера из окисленного молибдена, легированного иридием. Экспериментальное исследование производилось на лабораторном стенде, построенном на базе стандартного ПИ детектора и системы испарения веществ ТД спектрометров серии «Искович» [1]. Установлено, что с увеличением ТЕ эмиттера форма спектров полученные детектором приближается к закономерности испарения веществ, а температура максимума к температуре максимума спектра испарения веществ. Выявлено, что это связано с увеличением (при увеличении ТЕ) скоростей гетерогенных процессов в адсорбционном слое эмиттера. Разработана математическая модель данных зависимостей. Определены кинетические параметры испарения веществ.

ЛИТЕРАТУРА

1. 1. А.Ш. Раджабов, С.С. Исхакова, Д.Т. Усманов // ЖТФ, 2021, 91(12), с. 1893-1900. DOI: 10.21883/JTF.2021.12.51753.164-21

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАКОНОМЕРНОСТЕЙ ТЕРМОДЕСОРБЦИОННОЙ ПОВЕРХНОСТНО-ИОНИЗАЦИОННОЙ МАСС-СПЕКТРОМЕТРИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

А.Ш. Раджабов, Д.Т. Усманов, С.С. Исхакова

Институт Ионно-плазменных и лазерных технологий имени У.А. Арифова Академии Наук Республики Узбекистан, Дурмон йули 33, 100125 Ташкент, Узбекистан, e-mail: a.radjabov0217@gmail.com

Выявление закономерностей кинетики гетерогенных процессов в термодесорбционной поверхностно-ионизационной спектрометрии органических соединений показали [1,2], что, применяя данных закономерностей в массспектрометрии даёт возможность определять кинетические характеристики взаимодействия молекул органических соединений с поверхностью нагретого твердого тела.

Основа данного метода заключается в термопрограммированном нагреве веществ, ионизации испаренных молекул веществ в поверхностно-ионизационном источнике ионов, разделение ионов по массам в массанализаторе и регистрации ионов коллектором масс-спектрометра.

Разработана математическая модель данного метода, основанного на закономерностях поверхностной ионизации молекул в нестационарных условиях и термодесорбционной спектрометрии [3].

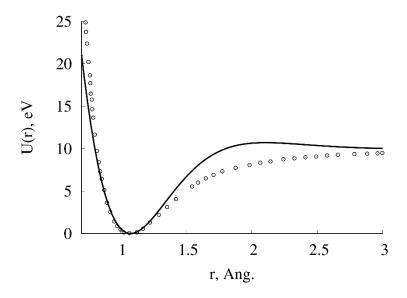
- 1. А.Ш. Раджабов, С.С. Исхакова, Д.Т. Усманов // ЖТФ, 2021, 91(12), с. 1893-1900.
- 2. A.Sh. Radjabov, S.S. Iskhakova, U.Kh. Rasulev, // ISI–2019, Proceedings, Pg. 32-36.
- 3. Попова Н.М. и др, «О современном методе термодесорбции и его использовании в адсорбции и катализе», Алма-Ата: Издательство «Наука», 1985. 85 с.

РАЗВИТИЕ АНАЛИТИЧЕСКИХ МЕТОДОВ В ТЕОРИИ РАСПЫЛЕНИЯ ТВЕРДЫХ ТЕЛ

А.И. Толмачев¹⁾, Л. Форлано²⁾

Российский новый университет, Москва, Россия
 Университет Калабрии, Козенца, Италия

Аналитическое исследование распыления твердых тел под действием ионной бомбардировки в последнее время практически полностью заменено компьютерным моделированием. Однако по-прежнему продолжаются попытки свести объяснение всех основных характеристик распыления к анализу одной единственной формулы или интеграла. Теоретическое рассмотрение распыления обычно проводится в рамках тех или иных упрощающих предположений. В теории распыления Зигмунда /1/ угловое распределение распыленных атомов считается изотропным. В работах /2,3/ угловое распределение представлено в виде суммы нескольких сферических функций. Однако дельта образное граничное условие на поверхности, описывающее вход ионов в мишень, не может быть с достаточной точностью описано двумя или тремя сферическими функциями. В работе /4/ метод дискретных потоков позволил решить проблему граничного условия, но обратное преобразование Лапласа было найдено только в приближенном виде. В настоящей работе обратное преобразование Лапласа сведено к интегралу в комплексной плоскости и может быть вычислено с любой точностью. Полученная аналитическая формула дает возможность анализировать зависимость коэффициента распыления от энергии ионов, массы ионов, потенциала межатомного взаимодействия и неупругих потерь энергии частиц в веществе.


- 1. Sigmund P. // Physical Review, 1969, vol. 184, p. 383.
- 2. Sanders J. B., Roosendaal H. E. // Radiation Effects, 1975, vol. 24, p. 161.
- 3. Vicanek M., Urbassek H. M. // NIMB, 1988, vol. 30, p. 507.
- 4. Tolmachev A. I. // NIMB, 1994, vol. 93, p. 415.

МОДЕЛИРОВАНИЕ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ВЗАИМОДЕЙСТВИЯ ДВУХ АТОМОВ С ПОМОЩЬЮ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

В.П. Кощеев^{1,*)}, Ю.Н. Штанов²⁾

¹⁾НИУ МАИ, филиал «Стрела», г. Жуковский, Моск. обл. ²⁾ТИУ, филиал ТИУ в г. Сургуте, г. Сургут *) e-mail: koshcheev1@yandex.ru

На рисунке представлены результаты сравнения расчетов [1] (кружки) и потенциальной энергии взаимодействия двух атомов азота (сплошная линия), которая вычислена в [2] с помощью численного решения системы нелинейных уравнений.

Работа выполнена при поддержке РФФИ, грант № 20-07-00236 а.

- Bhattacharya D., Shamasundar K. R., Emmanouilidou A.// J. Phys. Chem. A, 2021, V. 125, N. 36, 7778. DOI: 10.1021/acs.jpca.1c04613
- 2. Koshcheev V.P., Shtanov Yu.N. // arXiv:2112.07372. 2021. P.1.

МОДЕЛИРОВАНИЕ РАСПЫЛЕНИЯ Ве ИОНАМИ D И Т МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

Д.С. Тенсин*, А.Н. Зиновьев, В.С. Михайлов

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия *daria.tensin@gmail.com

С помощью молекулярно-динамического пакета LAMMPS рассчитаны энергетические и угловые зависимости коэффициентов распыления бериллия частицами плазмы. Эти данные позволяют сделать оценку распыления поверхностей, подвергающихся воздействию плазмы в токамаке-реакторе. Экспериментальные данные в исследуемом диапазоне энергий отсутствуют, наши данные согласуется с результатами независимых расчётов (рис. 1).

Для описания бериллиевой мишени был выбран многочастичный потенциал из работы [1]. Взаимодействие налетающих частиц с бериллием определяется потенциалом, полученным в рамках теории функционала плотности в нашей работе [2].

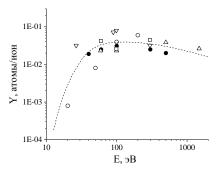


Рис.1 Зависимость коэффициента распыления Y от энергии налетающих частиц для D-Be. Чёрные точки – наш расчёт, пустые символы – результаты расчётов различных авторов из сборника [3]. Пунктирная кривая – фитирование расчётных данных [3].

- 1. Björkas C. et al // J. Phys.: Condens. Matter 2009 21 445002
- 2. Meluzova D.S et.al. // NIMB 2019 v.460 p.4.
- 3. Behrisch R., Eckstein W. Sputtering by Particle Bombardment Berlin Springer 2007.

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ ОТРАЖЕННЫХ ЧАСТИЦ ПРИ БОМБАРДИРОВКЕ АТОМАМИ ВОДОРОДА ПОВЕРХНОСТИ ВОЛЬФРАМА

В.С. Михайлов*, Д.С. Тенсин, А.Н. Зиновьев

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия
*) e-mail: chiro@bk.ru

Рассчитаны спектры обратно рассеянных частиц (см. Рис.1) в зависимости от угла и энергии для случая перпендикулярной бомбардировки вольфрама атомами водорода. В коде [1] использовалось приближение парных столкновении.

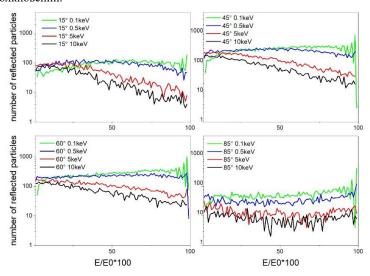


Рис.1. Спектры обратно рассеянных частиц.

По оси абсцисс представлена нормированная энергия. По оси ординат представлено число отраженных частиц. Общее число бомбардирующих частиц составляло 10 миллионов.

ЛИТЕРАТУРА

1.Meluzova, D.S., Babenko, P.Y., Shergin, A.P. et al. J. Synch. Investig. 13, 335–338 (2019)

КОЭФФИЦИЕНТЫ ОТРАЖЕНИЯ АТОМОВ ВОДОРОДА ОТ ПОВЕРХНОСТИ БЕРИЛЛИЯ И БЕРИЛЛИЯ, НАСЫЩЕННОГО ВОДОРОДОМ

В.С. Михайлов*), А.Н. Зиновьев, Д.С. Тенсин

ФТИ им. А.Ф. Иоффе, Санкт-Петербург, Россия
*) e-mail: chiro@bk.ru

С помощью кода [1] рассчитаны коэффициенты отражения атомов водорода от насыщенного водородом бериллия. В коде [1] использовалось приближение парных столкновении. Отношение концентраций водорода к бериллию составляло 20/13. Рассчитаны зависимости коэффициентов отражения от угла и энергии налетающих частиц (см. Рис.1).

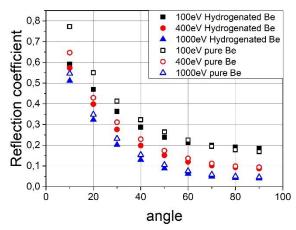


Рис.1. Коэффициенты отражения атомов водорода от чистого и насыщенного водородом бериллия

Различие в значениях коэффициентов отражения для гидрированного и чистого бериллия значительны при малых, скользящих углах падения. Это различие уменьшается с увеличением энергии налетающих частиц.

ЛИТЕРАТУРА

1. Meluzova, D.S., Babenko, P.Y., Shergin, A.P. et al. J. Synch. Investig. 13, 335–338 (2019)

ИССЛЕДОВАНИЕ ПРОФИЛЕЙ РАСПРЕДЕЛЕНИЯ АТОМОВ ПО ГЛУБИНЕ ЧИСТОГО И ИОННО-ЛЕГИРОВАННОГО КРЕМНИЯ

Б.Е. Умирзаков, С.Б.Донаев, Г.М.Ширинов

Ташкентский государственный технический университет E-mail: sardor.donaev@gmail.com

Методом электронной оже-спектроскопии в сочетании с ионным травлением исследовано влияние ионного легирования на профили распределения в кремнии атомов контактирующего с его поверхностью материала. Установлено, что предварительная имплантация ионов Ba^+ с E_0 =0,5..1 кэB приводит к резкому снижению (в 10-12 раз) диффузионной длины атомов кислорода и никеля.

Для контроля присутствия чужеродных примесей до контакта с воздухом предварительно исследован состав поверхности и приповерхностных слоев чистого и ионно-легированного Si в условиях высокого вакуума в том же приборе, где проводили очистку кремния и ионную имплантацию.

После ионной имплантации в спектре наряду с появлением интенсивных пиков бария (E=54, 68, 71, 582, 591 эВ) происходит расщепление основного низкоэнергетического пика Si $L_{23}VV$ на два (E=90 и 94 эВ). Изменение формы пика Si $L_{23}VV$ связано с образованием химических соединений типа BaSi и BaSi₂. Образование силицидов бария приводит также к смещению положения высокоэнергетического пика кремния E=1618 эВ на 4-5 эВ. При высоких дозах имплантации независимо от энергий ионов в спектрах появляется слабый пик E=506..508 эВ, характерный для кислорода. Концентрация его в приповерхностном слое (до глубины 100-150 Å) чистого и ионно-легированного Si, выдержанных 10-12 ч в высоком ($P=5\cdot10^{-7}$ Па) вакууме, не превышала 1-2 ат.%.

На поверхности как чистого, так и ионно-легированного образцов имеется значительное количество атомов кислорода (до 30-35 aт.%). Во всех случаях с ростом d концентрация кислорода уменьшается. Однако это уменьшение в случае ионно-легированных образцов значительно меньше, чем в случае чистого Si.

ЭЛЕКТРОННАЯ СТРУКТУРА ПОВЕРХНОСТИ Si ПРИ ИОННОЙ ИМПЛАНТАЦИИ

Б.Е. Умирзаков, С.Б.Донаев, Г.М.Ширинов, Б.Д.Донаев

Ташкентский государственный технический университет E-mail: sardor.donaev@gmail.com

С использованием комплекса методов фотоэлектронной и вторичноэлектроннои спектроскопии исследованы состав, структура и физикохимические свойства поверхности и приповерхностных слоев кремнии легированного низкоэнерге-тическими (E_0 <5 кэВ) ионами Ba^+ и O_2^+ . Установлено, что в процессе ионной имплантации происходит образование химических связей между атомами легирующего элемента и матрицы, изменение ширины энергетических зон и плотности электронных состояний в зонах.

Имплантация ионами $\mathrm{Ba^+}$ и $\mathrm{O_2^+}$ в основном проводилась при доза $\mathrm{D}\approx5$ - $6\cdot10^{16}$ см⁻², соответствующей насыщению, так как дальнейшее увеличение не приводит к заметному изменению состава и свойств приповерхностной области кремния. При такой дозе приповерхностные слои кремния полностью разупорядочиваются

При относительно низких энергиях фотонов ($\hbar\nu \leq 10$ -12 эВ) можно полагать, что структура КЭР примерно отражает плотность состояний электронов валентной зоны. По спектрам были определены основные параметры энергетических зон поверхности исследуемых образцов: значение фотоэлектронной Φ и термоэлектронной ϕ работы выхода, положение уровня Φ и относительно потолка валентной зони δ_s , величины загиба зоны V_s и сродства к электрону \varkappa , а также ширина запрещенной зоны E_a .

После имплантации ионов Ва⁺ в спектре происходят следующие изменения: положение и форма пиков меняются, появляются новые особенности, ширина КЭР и квантовый выход фотоэлектронов увеличиваются. Результаты электронной оже-спектроскопии показывают, что основная часть (80-85 %) внедренных атомов бария входит в химическую связь с атомами кремния и образует силицид бария. Это, по-видимому, приводит к изменению энергетических параметров поверхности и выпрямлению изгиба энергетических зон.

ТЕОРЕТИЧЕСКИЕ ЗАВИСИМОСТИ ПОРОГОВЫХ ЭНЕРГИЙ РАСПЫЛЕНИЯ ОТ УГЛА ПАДЕНИЯ ПЕРВИЧНЫХ ИОНОВ

А. Н. Пустовит

ИПТМ РАН, Черноголовка, Россия, e-mail: pustan@iptm.ru

В работе выполнены расчеты угловой зависимости нормированных пороговых энергий распыления ($E_{th}(\beta)/U_0$, β - угол падения первичных ионов на мишень, отсчет от нормали к поверхности мишени, U_0 - энергия сублимации атомов мишени) от отношения масс атомов мишени (m_2) и падающих ионов (m_1) . В процессе расчетов использовали результаты для зависимости $E_{th}(0)/U_0$ от $m_2/m_1/1/$ и свойства вершины конуса затенения при столкновении атомных частиц /2/.

В работе было найдено, что $E_{th}(\beta)$ и $E_{th}(0)$ связаны формулой:

m, / m.

Рис 1. Зависимости $E_{th}(\beta)/U_0$ от m_2/m_1 для различных углов β.

$$E_{th}(\beta) = \frac{E_{th}(0)}{\cos^{5/2}\beta} \tag{1}$$

где s - показатель степени в потенциале взаимодействия сталкивающихся частин.

На рис. представлены зависимости $E_{th}(\beta)/U_0$ от m_2/m_1 для разных углов β и s=2, рассчитанные по формуле (1). Зависимость $E_{th}(0)/U_0$ от m_2/m_1 взята из /1/.

Обсуждаются вопросы сравнения полученных результатов с экспериментальными данными.

ЛИТЕРАТУРА

100

- 1. Pustovit A.N. // J. of Surf. Inv.: X-ray, Synchr. and Neutr. Techn. 2017. Vol. 11. No. 5. P. 1069.
- 2. Пустовит А.Н. // Поверхность. Рентг, синхр. и нейтр. иссл. 2022. №4. С. 106.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ АДСОРБЦИИ ФУЛЛЕРЕНА НА ГРАФЕН

Ф.Ф. Умаров 1 , А.Н. Улукмурадов 2 , И.Д. Ядгаров 2 , И.З. Уролов 2 , И.А. Абдурахманова 3)

1) Казахстанско-Британский технический университет, Алматы, Казахстан 2) Институт ионно-плазменных и лазерных технологий АН РУз. Ташкент, Узбекистан

3) Ургенчский государственный университет, Ургенч, Узбекистан

Была построена компьютерная модель одиночного бездефектного фуллерена C_{60} . Затем строилась компьютерная модель графена, которая предназначена для рассмотрения вопроса адсорбции фуллерена на поверхности графена. Для этого был выбран прямоугольной участок графена, состоящий из 112 атомов углерода (см. рисунок 1.)

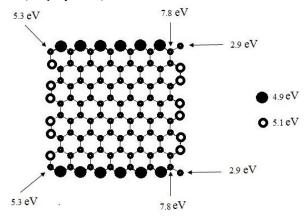


Рис. 1. Прямоугольный 112-атомный нанографен.

В результате адсорбции нарушается сферическая симметрия фуллерена C_{60} а также получены энергии связывания и расстояния адсорбции для адсорбированных фуллеренов C_{60} . которые сравнивались с литературными экспериментальными и теоретическими результатами.

ВЛИЯНИЕ ПОВЕРХНОСТНОГО ПОТЕНЦИАЛА ДИЭЛЕКТРИКА НА РОСТ ЭМИССИИ ПОЛОЖИТЕЛЬНЫХ ЧАСТИЦ ПРИ ИОННОМ ОБЛУЧЕНИИ

Е.Ю. Зыкова, К.Ф. Миннебаев, К.Е. Озерова, Н.Г. Орликовская, Э.И. Рау, А.А. Татаринцев *)

Физический факультет МГУ имени М.В. Ломоносова, Москва, Россия
*) e-mail: tatarintsev@physics.msu.ru

Процессы зарядки диэлектрических материалов при их облучении заряженными частицами вызывают большой интерес в радиационной физике, в космических исследованиях и во многих практических приложениях.

Наши эксперименты [1, 2] показали значительное увеличение коэффициент ионно-ионной эмиссии для массивных диэлектрических мишеней в процессе зарядки ионными пучками. Так в наших экспериментах коэффициент выхода положительных ионов из диэлектрических материалов лежит в диапазоне от 0,2 до 1, что является аномально высоким значением.

Основной целью этого эксперимента является установление связи между ростом эмиссии положительных частиц и величиной поверхностного потенциала. Для выяснения причин увеличение эмиссии был проведен ряд экспериментов с плёночными диэлектриками различной толщины на проводящей подложке, поскольку величина поверхностного потенциала зависит от толщины этих диэлектриков. В этих экспериментах с целью устранения аппаратного эффекта от выбитых вторичных электронов из полусферического коллектора частиц, была проведена его модернизация.

- 1.К.Ф. Миннебаев, А.А. Татаринцев Э.И. Рау // ФТТ, 2019, т. 61, № 6, с. 1090.
- 2.E.I. Rau, A.A. Tatarintsev, E.Yu. Zykova, K.E. Ozerova, K.F. Minnebaev. // Vacuum, 2020, V. 177, 109373.

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ АДСОРБЦИИ АТОМОВ ВОДОРОДА НА УГЛЕРОДНЫХ НАНОТРУБОК

У.Б. Улжаев¹⁾, И.Д. Ядгаров¹⁾, Е. А. Юлдашева²⁾

1) Институт ионно-плазменных и лазерных технологий АН РУз. Ташкент, Узбекистан

2) Ургенчский государственный университет, Ургенч, Узбекистан

Методами молекулярной динамики, рассмотрено процессы адсорбции атомов водорода на углеродных нанотрубках. На рисунке 1 приведены результаты по нормальному рассеянию атомов водорода различных энергий поверхностью нанотрубки. Для описания межатомного взаимодействия использовался потенциал Бреннера второго поколения, который хорошо описывает углеродные структуры [1].

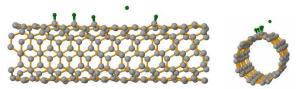


Рис. 1 Процессы адсорбции атомов водорода на углеродных нанотрубк

Результаты моделирования показывают, что процесс адсорбции происходит в основном при взаимодействии атомов водорода с углеродной нанотрубкой с энергиями 2–16 эВ. При энергии выше 16 эВ наблюдается инкапсуляция и рассеяние атомов водорода.

ЛИТЕРАТУРА

1. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnot. "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons", J.Phys: Condens. Matter, **14**, pp.783-802 (2002).

ИССЛЕДОВНИЯ МАЛОУГЛОВОГО РАССЕЯНИЯ ИОНОВ Ne^+ И Ar^+ С ПОВЕРХНОСТЬЮ $Al_2O_3(001)$ ПРИ СКОЛЬЗЯЩИХ УГЛАХ ПАДЕНИЯХ

А.С. Аширов 1), У.О. Кутлиев 1), Д.Д. Матякубов 2), П. Давлетова 1), Я.Ж. Жаббарова 1)

1) Ургенческий госуниверситет, Ургенч, Узбекистан 2) Ургенческий филиал ТУИТ, Ургенч, Узбекистан e-mail: uchkunk@mail.ru

В последнее десятилетие Al_2O_3 активно изучаются ввиду широких перспектив их практического применения в кремниевой микроэлектронике в качестве диэлектрических слоёв в элементах логики и памяти. Перечисленные диэлектрики объединяет то, что они обладают большой величиной диэлектрической проницаемости по сравнению с SiO_2 .

В настоящее время одним из методов моделирования поверхностей твёрдых тел, дающих близкое к экспериментальному значение определения структуры и состава диэлектриков, является спектроскопия малоуглового рассеяния ионов. В этой работе нами смоделировано малоугловое рассеяния ионов Ne⁺ и Ar⁺ с бездефектной поверхности Al₂O₃(001) при углах скольжения $\psi = 5^{\circ}$ и 7° с начальной энергией 5 кэВ. Изучены характерные траектории рассеянных ионов по кристаллическим направлениям <110> и <10>. Изучено влияния масс поверхностных атомов на процесс рассеяния ионов. Интенсивность пика полуканалированных ионов в случае <10> оказалась значительно больше по сравнению с <110>, что связано с лучшей фокусировкой рассеянных частиц в направлении <10>. В случае <110> донная цепочка полуканала состоит из атомов Al, что приводит к большим потерям энергии и, таким образом, к смещению полуканалного пика в область низких энергий. В результате этого оба пика (пики от полуканала и от атомной цепочки) в энергетическом спектре смешены в сторону низких энергий, а их полуширина больше, чем в случае <10>. Таким образом было установлено влияние формы и параметров полуканалов на характеристики рассеянных частиц.

РАССЕЯНИЯ ИОНОВ ОТ ДЕФЕКТНОЙ ПОВЕРХНОСТИ InGaP(001) ПРИ СКОЛЬЗЯЩИХ УГЛАХ ПАДЕНИЯХ

М.К.Каримов 1 , У.О.Кутлиев 1 , Д.Д.Матякубов 2 , М.Отабаев 1 , Я.Ж.Жаббарова 1

1)Ургенческий госуниверситет, Ургенч, Узбекистан 2)Ургенческий филиал ТУИТ, Ургенч, Узбекистан e-mail: uchkunk@mail.ru

Последние достижения в областях физики тонких пленок и полупроводников приборов связаны с технологией получения тонких пленок с принципиально новыми функциональными возможностями для нанофизики, оптоэлектроники, солнечной энергетики, високых технологий. В связи с этим исследования образования полупроводниковых тонких пленок и изучение их поверхностных свойств являются актуальными задачами сегодняшнего дня.

Нами исследование процесс рассеяния ионов при скользящих углах падения от поверхности InGaP(001), который имеет поверхностные дефекты. Получена энергетический спектр рассеянных ионов Ne^+ и Ar^+ от этой дефектной поверхности в низкокристаллических направлениях при малых энергиях бомбардирующих ионов.

Приведены исследования рассеяния ионов от ступенчатой поверхности InGaP(001). Показано, что в обоих случаях ионы, захваченные в канал, образованный атомами ступеньки, некоторое время находятся в канале, а затем деканалируются. Приведенные расчеты показали, что траектории деканалированных частиц имеют зигзагообразную форму. Сравнены энергетические спектры рассеянных ионов от вышеуказанных ступенчатых поверхностей. В обоих случаях на энергетических спектрах наблюдаются пики, соответствующие одно- и двукратно рассеянным ионам. Во всех наблюдаемых случаях пик однократного рассеяния имеет большую интенсивность по сравнению с пиком двукратного рассеяния ионов. Расчёты показали, что при наличии на поверхности атомных ступенек в обоих случаях можно определить сорт торцевого атома по характеристикам однократного рассеяния ионов.

ВЛИЯНИЕ РАЗМЕРА ЗЕРЕН НА ОБРАЗОВАНИЕ КОНУСОВ НА ПОВЕРХНОСТИ НИКЕЛЯ ПРИ ВЫСОКОДОЗНОМ ОБЛУЧЕНИИ ИОНАМИ АРГОНА С ЭНЕРГИЕЙ 30 кэВ

А.М. Борисов¹⁾, Е.С. Машкова²⁾, М.А. Овчинников²⁾, Р.Х.Хисамов^{3*)}, Р.Р. Мулюков ³⁾

¹⁾ МАИ (НИУ), Москва, Россия
 ²⁾ НИИЯФ МГУ, Москва, Россия
 ³⁾ ИПСМ РАН, Уфа, Россия
 *) r.khisamov@mail.ru

Приведены результаты исследования влияния среднего размера зерен, от субмикрокристаллического (СМК) до крупнокристаллического, на концентрацию и геометрические размеры ионно-индуцированных конусов, образующихся на поверхности никеля при облучении ионами Ar+ с энергией 30 кэВ. СМК структура получена деформацией кручением под высоким давлением /1/. Образцы с микро- и крупнокристаллической структурой получены отжигом деформированных образцов при температурах 300, 500 и 800 °C. Деформационное снижение размера зерен никеля приводит к повышению концентрации конусов на поверхности. Высота образующихся конусов при высокодозном ионном облучении зависит от размера зерен в никеле. Причина повышения концентрации конусов на СМК никеле по сравнению с микро- и крупнокристаллическим никелем обусловлена снижением размера зерен и повышением дефектности структуры при этом. Металлы с высокой концентрацией конусов на поверхности представляют интерес в качестве материалов полевых катодов, электродов разрядных приборов, обращенных к плазме деталей в термоядерных установках.

ЛИТЕРАТУРА

1. A.A. Nazarov, R.R. Mulyukov, Nanostructred Materials. In: Handbook of Nano-Science. Engineering and Technology, CRC Press, Boca Raton, 2002, p. 22-1-22-41.

ТЕМПЕРАТУРНЫЕ ПОРОГИ ОТРИЦАТЕЛЬНО-ИОННОГО КЛАСТЕРНОГО РАСПЫЛЕНИЯ МОНОКРИСТАЛЛА КРЕМНИЯ ИОНАМИ ЦЕЗИЯ

Р. Джаббарганов¹⁾, Б.Г. Атабаев¹⁾, М.А. Пермухамедова¹⁾, З.Ш Шаймарданов¹⁾, А.С. Халматоа¹⁾

1) Институт ионно-плазменных и лазерных технологий АН РУ 1, Ташкент. Узбекистан

Методом статического СВВ ВИМС исследованы температурные зависимости атомарного и кластерного распыления монокристалла кремния ионами цезия. Показано, что температурные пороги распыления кремния в виде димеров Si2 - 400°C, триммеров Si3, тетрамеров Si4 и пентамеров Si5-500°C. Одновременно с этим появляются выходы ионов, диффундирующих из объема углерода С и карбида кремния SiC. Таким наблюдается резкое увеличение распыления кластеров Si2-Si5 кремниевой подложки при нагреве. Эффективное кластерное распыление объясняется симметричными столкновениями атомов мишени и развитием нелинейных каскадов смешения.

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ОТРИЦАТЕЛЬНО-ИОННОГО АТОМАРНОГО И КЛАСТЕРНОГО РАСПЫЛЕНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ КАРБИДА КРЕМНИЯ ИОНАМИ ЦЕЗИЯ

Б.Г. Атабаев¹⁾, Р.Джаббарганов¹⁾

1) Институт ионно-плазменных и лазерных технологий АН РУ 1, Ташкент. Узбекистан

Методом статического СВВ ВИМС исследованы температурные зависимости атомарного и кластерного распыления эпитаксиальной карбида кремния ионами цезия. Показано, что выход ионов кислорода О уменьшается на 20 процентов, а ионы кремния Si и углерода увеличиваются более 30 процентов при нагреве до 1000 С. Выход молекулярных ионов кислорода О2 в 3 раза, оксидных кластеров кремния SiO и SiO2, карбид кремниевых кластеров Si2C2 уменьшается на 20 процентов при нагреве до 700°С. Определены температурные пороги распыления карбида кремния в виде Si_3C_3 и Si_3C_4 - 500^0 C, Si_3 , SiC₃, Si₂C и Si₂C₃ -1000⁰C. Одновременно с этим увеличиваются выходы ионов углерода С и линейных кластеров углерода C1-C5 и карбида кремния SiC, нестехиометричных SiC₄ и Si₂C₅. Таким образом при уменьшении распыления оксидных кластеров кремния наблюдается увеличение распыления стехиометричных кластеров Si₃C₃ и Si₃C₄ карбид кремниевой подложки при нагреве до 700°С. Эффективное распыление кластеров с большим числом атомов кремния и углерода объясняется термодесорбцией молекулярного кислорода и оксидных кремниевых кластеров, отжигом точечных дефектов и развитием нелинейных каскадов смешения при несимметричных столкновениях двухкомпонентной мишени.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ЭМИССИОННЫХ СВОЙСТВ СПЛАВА Pd-Ba, АКТИВИРОВАННОГО ТЕМПЕРАТУРНЫМ ПРОГРЕВОМ И ЛАЗЕРНЫМ ОБЛУЧЕНИЕМ

М.Т. Нормуродов, А.К. Ташатов*), Д.Б.Хакимова, С.Н.Эшбобоев

КарГУ, г.Карши, Узбекистан. *)e-mail: atashatov@mail.ru

Данная работа посвящена сравнительному анализу эмиссионных свойства сплавов Pd-Ba (Ba-1,5ат.%), активированных температурным прогревом и лазерной обработкой.

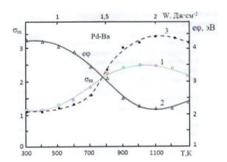


Рис.1. Зависимости значении σm , еф от температуры прогрева и плотности энергии лазерного облучения для сплава Pd-Ba:1,3- σ_m , 2- еф

На рис.1 представлена динамика изменения максимального значения коэффициента ВЭЭ от и значении работы выхода еф сплава Pd-Ba при активировке температурным прогревом и лазерным облучением.

Сравнительный анализ показал, что в условиях высокого вакуума лазерная активировка приводит к значительно большому увеличении σ m, чем в случае температурной активировки. Это объясняется интенсивным удалением примесных атомов O, C, S под действием лазерных лучей. Определены оптимальные режимы лазерной активировки. Показано что, активированные сплавы Pd-Ва выдерживают значительные температурные нагрузки (T \approx 700 K) в течение 450-500 часов. Дальнейшее увеличение времени прогрева приводит к появлению дефектных участков, обогащенных атомами O, C, и S.

ИЗУЧЕНИЕ МОРФОЛОГИИ И ЭЛЕКТРОННОЙ СТРУКТУРЫ НАНОПЛЕНОК NiSi₂ ИСПОЛЬЗУЕМЫХ В ПРИБОРАХ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ

Н.М. Мустафоева*), А.К. Ташатов, М.Н. Аликулов

КарГУ, г.Карши, Узбекистан, КарМИИ, г.Карши, Узбекистан *)e-mail: mustafoyevan@gmail.com

Данная работа посвящена изучению состава, морфологии и электронной структуры нанопленок NiSi₂, полученных на поверхности Si(111) с использованием метода твердофазного осаждения [1].

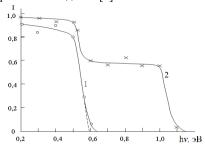


Рис. Зависимость интенсивности I проходящего света от энергии фотонов для Si с нанопленкой NiSi2 толщиной h, Å: I-5; 2-200.

На рис. приведены зависимости интенсивности проходящего света I от энергии фотонов hv для Si с нанопленкой NiSi2 толщиной h=50 Å и h=200 Å. В первом случае резкое уменьшение интенсивности проходящего света наблюдается при двух значениях hv=0.5 и 1.0 эВ, которые связаны с поглощением света соответственно на участках, покрытых наноостровками NiSi2, и на участках, не покрытых NiSi2. Экстраполяция этих кривых к оси hv показывает, что для NiSi2 значение $E_g\sim0.6$ эВ, а для Si ~1.1 эВ. В случае сплошной пленки NiSi2 значение I резко уменьшается до нуля в интервале hv=0.5–0.6 эВ.

ЛИТЕРАТУРА

1. Tashatov A.K., Mustafoeva N.M. //X-ray, Synchrotron and Neutron Techniques, Vol.14, No 1, pp. 81-84 (2020)

ЭНЕРГЕТИЧЕСКИЕ ЗАВИСИМОСТИ ОТРИЦАТЕЛЬНО-ИОННОГО АТОМАРНОГО И КЛАСТЕРНОГО РАСПЫЛЕНИЯ МЕДИ

Р. Джаббарганов¹⁾, Б.Г. Атабаев¹⁾, А.С. Халматов¹⁾

¹⁾ Институт ионно-плазменных и лазерных технологий имени У.А. Арифова АН РУ, Ташкент, Узбекистан
*) e-mail:atabaev.bg@gmail.com

Методом ВИМС исследованы энергетические зависимости атомарного и кластерного распыления меди щелочными ионами. Впервые измерены субкэВные энергетические пороги распыления меди мономера 0,3 кэВ, димера 0,5 кэВ и триммера 0,5 кэВ в виде отрицательных ионов при бомбардировке ионами цезия и натрия.

Результаты измерения эмиссии атомарных и кластерных отрицательных ионов меди в зависимости от энергии бомбардирующих положительных ионов цезия и натрия показывают, что медная мишень распыляется преимущественно в виде отрицательных ионов атомов и кластеров меди и масса бомбардирующих ионов заметно влияет на заселенность масс спектров кластерных ионов. Экспериментальные результаты объяснены механизмами прямой эмиссии атомов и кластеров и туннельным механизмом образования отрицательных ионов.

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ТЕМПЕРАТУРЫ КАТОДА С ТОНКОЙ ДИЭЛЕКТРИЧЕСКОЙ ПЛЕНКОЙ НА ВОЛЬТ-АМПЕРНУЮ ХАРАКТЕРИСТИКУ ТЛЕЮЩЕГО РАЗРЯДА

 Γ . Г. Бондаренко¹⁾, М.Р. Фишер²⁾, В.И. Кристя^{2*)}

1) Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

²⁾ Московский государственный технический университет имени Н.Э. Баумана, Калужский филиал, Калуга, Россия
*) e-mail: kristya@bmstu.ru

В состав катодов газоразрядных приборов часто включают оксиды металлов, что может приводить к формированию на их рабочей поверхности тонких диэлектрических пленок. В разряде на поверхности пленки накапливаются положительные заряды, что обусловливает возникновение в ней сильного электрического поля, достаточного для появления термополевой эмиссии электронов из металлической подложки катода в пленку. Часть таких электронов может преодолевать потенциальный барьер на границе пленки и выходить в разрядный объем, увеличивая эффективный коэффициент ионноэлектронной эмиссии электрода. Однако влияние этого фактора на характеристики разряда и, в частности, на его вольт-амперную характеристику, исследовано лишь при температуре катода порядка комнатной, когда механизм электронной эмиссии из подложки катода в пленку является чисто полевым /1/.

В данной работе представлена модель, позволяющая рассчитать зависимость характеристик тлеющего разряда от температуры катода с диэлектрической пленкой. С ее использованием изучено влияние нагрева катода и толщины диэлектрической пленки на вольт-амперную характеристику разряда.

ЛИТЕРАТУРА

1. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Известия РАН. Серия физическая, 2020, Т. 84, № 6, С. 846.

СКОЛЬЗЯЩЕЕ ВЗАИМОДЕЙСТВИЕ ПУЧКОВ УСКОРЕННЫХ ПРОТОНОВ С ИСКРИВЛЕННОЙ ДИЭЛЕКТРИЧЕСКОЙ ПОВЕРХНОСТЬЮ

Л.А. Жиляков¹⁾, В.С. Куликаускас¹⁾

1)НИИЯФ МГУ, Москва, Россия e-mail: zhiliakovla@mail.ru

В работе /1/ экспериментально показано, что при скользящем взаимодействии с плоской диэлектрической поверхностью ускоренные протоны не испытывают ионизационных потерь энергии. В представленной работе проведены исследования взаимодействия пучков ускоренных протонов с искривленной поверхностью.

В качестве источника пучков ускоренных протонов использовался каскадный ускоритель КГ-500 НИИЯФ МГУ. Измерения проводились методом Резерфордовского обратного рассеяния (RBS). Спектр протонов, испытавших скользящее взаимодействие с искривленной поверхностью, снимался при прохождении пучка через отклоняющий конденсатор с изогнутыми пластинами с радиусом кривизны R=50 см. Энергия пучка протонов составляла 300 кэВ. По результатам измерений установлено, что сдвиг пика распределения энергии пучка протонов, испытавших скользящее взаимодействие с искривленной поверхностью, не превышает 1 канала измерения (0.5 кэВ).

Полученные результаты позволяют сделать вывод, что при скользящем взаимодействии с искривленной поверхностью пучки ускоренных протонов не испытывают ионизационных потерь энергии, т.е. взаимодействие имеет бесконтактный характер.

ЛИТЕРАТУРА.

1.Л.А. Жиляков, А.В. Костановский, Г.А. Иферов, В.С. Куликаускас, Г.П. Похил, И.В. Швей // Поверхность, 2002, №11, С.65.

ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ С ИЕРАРХИЧЕСКИМИ СТРУКТУРАМИ

Б.Л. Оксенгендлер $^{1)}$, Х.Б. Ашуров $^{1)}$, С.Е. Максимов $^{1)}$, Н.Н. Тураева $^{2)}$

¹⁾ Институт ионно-плазменных и лазерных технологий Академии Наук РУз, Ташкент, Узбекистан; ²⁾ Webster University, USA

С использованием методологии радиационной физики осуществлен анализ роли трех типов атомных перестроек: радиационного дефектообразования (РДО), радиационно стимулированной диффузии (РСД) и радиационных квазихимических реакций (РКХР) в изучении изменения передачи информации с нижней платформы на верхнюю (X-Y) в иерархических структурах. Рассмотрим две соседние платформы иерархической лестницы во внешней "шумящей" среде. Пусть на нижней ступени динамика элементов х (их всего k) описывается как:

$$\frac{dx_i}{dt} = f_i(x_j, t) + w_i(t) + \sum_{i=1}^k \int_0^t x_i(t') w_{ij}(t' + \tau) dt'$$
 (1)

Здесь w_i - флуктуация от внешних шумов, w_{ij} - коэффициенты корреляции между элементами i и j, $f_i(x_j,t)$ - "скорости", моделирующие возможные связи между элементами нелинейного уровня. Анализ этих k уравнений состоит в поиске ситуаций, когда фаза $\phi_i(t)$ и амплитуды $A_i(t)$ всех изменяющихся осцилляторов укладываются всеми воздействиями в коррелированную систему, обеспечивающее ненулевое значение для $y_i \sim \int_0^t x_i(t')w_{ij}(t'+\tau)dt'$, что соответствует снятию информации с нижней платформы и передачу на верхнюю. Анализ методом фиктивного осциллятора Ван дер Поля позволил выделить ситуации, когда осцилляторы проводят больше времени в возбужденном состоянии: $P = \tau_{ex}/\tau_0 > 1$. Далее проанализировано влияния РДО, РСД, РКХР на параметры (1) и их отражение в параметрах осциллятора Ван дер Поля [1]. Особое внимание уделено изменению числа k, что соответствовало генерации или стоку элементов x_i . Работоспособность представлений проверена на объектах различного типа, включая биологические.

[1] J.S.Nicolis, M.Benrubi. //J. Theor. Biol., 1976, V.59, P.77.

О МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДИФФУЗИИ ЭКСИТОНОВ В ПОЛУПРОВОДНИКЕ С УЧЕТОМ ИХ ПЕРЕМЕННОГО ВРЕМЕНИ ЖИЗНИ

Е.В. Серегина^{1*)}, М.А. Степович²⁾, М.Н. Филиппов³⁾

¹⁾ Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет), Калужский филиал, Калуга, Россия

²⁾ Калужский государственный университет им. К.Э. Циолковского, Калуга, Россия

³⁾ Институт общей и неорганической химии им. Н. С. Курнакова РАН, Москва, Россия

*) e-mail: evfs@yandex.ru

Ранее /1/ рассмотрен процесс нестационарной диффузии экситонов в монокристаллическом GaN после прекращения воздействия электронного зонда на полупроводниковую мишень. Рассматривался один канал рекомбинации экситонов и потому электрофизические параметры мишени при проведении расчетов полагались постоянными. Однако имеющиеся экспериментальные результаты /2, 3/ говорят о возможности построения математической модели с двумя независимыми каналами рекомбинации, что и сделано в настоящей работе: процесс диффузии экситонов рассмотрен с учетом их переменного эффективного времени жизни.

Исследования проведены при финансовой поддержке РФФИ (проект № 19-03-00271).

- 1. Seregina E.V., Polyakov A.N., Stepovich M.A. // Journal of Physics: Conf. Series, 2018, Vol. 955, Art. No. 012032.
- 2. Поляков А.Н., Noltemeyer M., Hempel T., Christen J., Степович М.А. // Прикладная физика, 2015, № 4, 11.
- 3. Амрастанов А.Н., Серегина Е.В., Степович М.А., Филиппов М.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2018, № 8, 48.

ВСПЫШКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ И ПУЛЬСИРУЮЩИЙ ЭЛЕКТРОННЫЙ ПОТОК В РЕНТГЕНОВСКИХ ИСТОЧНИКАХ НА ОСНОВЕ КРИСТАЛЛОВ SBN-61

В.А. Андрианов^{1*}, АЛ. Ерзинкян¹⁾, Л.И. Ивлева²⁾, П.А. Лыков²⁾

1) НИИЯФ МГУ, Москва, Россия
2) Институт Общей физики РАН, Москва, Россия
*) e-mail: andrya22@mail.ru

В последние годы свойства пироэлектрических кристаллов привлекали повышенное внимание в связи с созданием портативных источников рентгеновского и нейтронного излучения. Нами был исследованы кристаллы $Sr_{0.61}Ba_{0.39}Nb_2O_6$ (SBN-61), имеющие очень высокий пироэлектрический коэффициент λ = 85 нКл·см⁻²К⁻¹. Показано, что данные кристаллы могут быть использованы в рентгеновских устройствах, но только в режиме нагрева в вакууме, где было получено ускоряющее напряжение до 50 кВ. Свойства кристаллов SBN-61 заметно хуже, чем у LiNbO₃ и LiTaO₃. При охлаждении в вакууме происходит деполяризация верхней грани вследствие малого коэрцитивного электрического поля кристаллов, равного 2.5 кВ/см. В результате кристалл теряет свойства рентгеновского источника, как в режиме охлаждения, так и в режиме нагрева.

Обнаружен новый эффект пульсирующего электронного потока и рентгеновского излучения при увеличении давления газа от $2 \cdot 10^{-2}$ до 10^{-1} Торр. Электронный поток имел вид креста, расположенного в центре кристалла. Длительность вспышки не превышала 0.04 с. Интервал между вспышками не был постоянен: в начале он имел значение около 0.2 мс, и в конце свыше 5 с. Рентгеновское изучение также имело пульсирующий характер, и его интенсивность уменьшалась со временем.

Возможной причиной данного эффекта является переориентация сегнетоэлектрических доменов в области верхней грани кристалла.

МОДЕЛИРОВАНИЕ ПРОХОЖДЕНИЯ ЭЛЕКТРОНОВ С ЭНЕРГИЕЙ 10 кэВ ЧЕРЕЗ КОНУСНЫЕ ДИЭЛЕКТРИЧЕСКИЕ КАПИЛЛЯРЫ

А.Д. Пятигор¹⁾, К.А. Вохмянина¹⁾

1)Белгородский государственный национальный исследовательский университет, Белгород, Россия e-mail: pyatigor@bsu.edu.ru

Результаты экспериментов по управлению пучками электронов диэлектрическими конусными каналами показали, что процесс прохождения через них пучка электронов можно объяснить формированием на внутренней поверхности диэлектрического канала динамического самосогласованного распределения заряда. Существующие модели, описывающие процесс прохождения пучка электронов через диэлектрический канал, являются одномерными или двумерными, что не дает полного представления о том, как выглядит зарядовое распределение в диэлектрических каналах, а также о том, как изменяется форма и направление движения пучка заряженных частиц под действием электрических полей внутри диэлектрического канала.

В ходе работы была создана и реализована численная трехмерная модель, описывающая процесс скользящего взаимодействия пучка 10 кэВ электронов с поверхностью конусного канала. Разработанная модель динамически описывает движение электронного пучка в канале, а также процессы зарядки и разрядки внутренних стенок канала. Предполагается, что процессы зарядки и разрядки канала происходят в тонком приповерхностном слое материала, а влиянием вторичной электронной эмиссии пренебрегается.

Результаты расчетов в рамках созданной модели движения электронного пучка через конусный диэлектрический канал показывают хорошее качественное согласие с данными экспериментов по управлению и фокусировке пучка электронов с энергией 10 кэВ.

ИССЛЕДОВАНИЕ ПРОХОЖДЕНИЯ ЭЛЕКТРОНОВ С ЭНЕРГИЕЙ 12-15 keV ЧЕРЕЗ СТЕКЛЯННЫЕ СУЖАЮЩИЕСЯ КАПИЛЛЯРЫ

Л.В. Мышеловка^{1*)}, А.Д. Пятигор¹⁾, К.А. Вохмянина¹⁾, В.С. Сотникова^{1,2)}

В работе представлены результаты экспериментальных исследований прохождения пучка электронов с энергией 12 и15 keV через стеклянные сужающиеся макрокапилляры. В результате измерений показано отсутствие явной зависимости выходного тока он энергии электронов (Рисунок 1). Проведены измерения зависимости тока пучка на выходе из капилляров от времени.

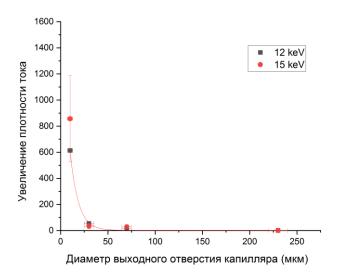


Рис.1. Зависимости фокусирующей способности капилляров от диаметров выходных отверстий для разных энергий электронов (сплошной линией обозначено экспоненциальное приближение полученных данных)

¹⁾ Белгородский государственный национальный исследовательский университет, Белгород, Россия

²⁾ Белгородский государственный технологический университет имени В. Г. Шухова, Белгород, Россия
*) lareczn@gmail.com

О МОНИТОРИНГЕ ПОЛОЖЕНИЯ ДВИЖУЩЕЙСЯ ЗАРЯЖЕННОЙ ЧАСТИЦЫ С ПОМОЩЬЮ ДИФРАКЦИОННОГО ИЗЛУЧЕНИЯ НА МЕТАЛЛИЧЕСКОЙ СФЕРЕ

В.В. Сыщенко^{1,*)}, А.И. Тарновский¹⁾, Н.Ф. Шульга²⁾,

¹⁾ НИУ «БелГУ», Белгород, Россия;
²⁾ ХНУ им. В. Н. Каразина, Харьков, Украина
*) e-mail: syshch@bsu.edu.ru

Дифракционное излучение заряженной частицы на проводящей сфере было описано в /1/ на основе метода изображений. В /2,3/ этот подход использован для вычисления поляризации излучения. Там же был предложен способ определения азимута траектории пролетающей частицы относительно центра сферы с использованием единственного детектора, регистрирующего поляризацию излучения в некотором выбранном направлении. Здесь мы обращаем внимание на возможность определения положения частицы в плоскости, перпендикулярной ее скорости, однозначного в пределах одного квадранта, с помощью трех детекторов (рис. 1), регистрирующих лишь интенсивность, но не поляризацию излучения.

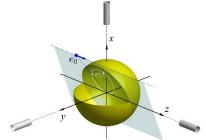


Рис 1. Пролетающая мимо сферы частица и положения детекторов

- 1. Сыщенко В.В., Ларикова Э.А. // Поверхность, 2019, № 4, с. 100.
- 2. Shul'ga N.F., Syshchenko V.V. // Nuclear Instrum. Methods B, 2019, v. 452, p. 55.
 - 3. Сыщенко В.В., Ларикова Э.А. // Поверхность, 2019, № 10, с. 108.

ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТИ ПОВЕРХНОСТНОЙ ИОНИЗАЦИИ ИНСЕКТИЦИДА ЦИПЕРМЕТРИНА

Ш.М. Ахмедов, Ш.Дж. Ахунов, Д.Т. Усманов*)

Институт ионно-плазменных и лазерных технологий, AH РУз, Ташкент, Узбекистан, *)e-mail: usmanov@iplt.uz

На сегодняшний день, в мире, для удовлетворения текущего спроса на продукты питания помимо повышения производительности в сельском хозяйстве и садоводстве защита натуральных пищевых продуктов от различных вредителей является актуальной задачей. Во всем мире для этого используется пестициды. Однако пестициды по определению токсичны и обладают способностью мигрировать в природных условиях, накапливаться в пищевых продуктах, длительное время сохраняться в различных объектах окружающей среды (вода, почва, атмосферный воздух). Из-за чего повышается угроза отравления людей и домашних животных. Поэтому, разработка эффективных аналитических методов и приборов изучения накопления пестицидов в пищевых цепочках, а также контроля за качеством продуктов питания является актуальной задачей.

В связи с этим, цель настоящей работы является развития поверхностноионизационных физико-химических методов для анализа пестицидов и их следовых количеств в пищевых продуктах. С этой целью, в работе исследовано закономерности поверхностной ионизации циперметрина.

Исследование проведены в масс-спектрометре МИ-1201В [1]. Основными линием в масс-спектре являлся диссициативные [M-R]⁺ ионы. Изучены зависимость интенсивности тока [M-R]⁺ ионов от температуры эмиттера, а также закономерности мономолекулярных распадов колебательновозбужденных первичных ионов.

ЛИТЕРАТУРА

 Dilshadbek Usmanov and all, // European Journal of Mass Spectrometry, 2021, Vol. 27(1) 29–38

ФОРМИРОВАНИЕ НАНОРАЗМЕРНЫХ ПЛЕНОК НА ПОВЕРХНОСТИ МОНОКРИСТАЛЛОВ КРЕМНИЯ И ИЗМЕНЕНИЕ ИХ ЭЛЕКТРОННЫХ СВОЙСТВ

М.Т. Нормурадов^{1,*}, К.Т. Довранов¹, Х.Т. Давранов¹, Д.А. Нормуродов¹, И. Дониёрова¹

При имплантации монокристаллического Si(111) большой дозой (D \geq 6·10¹⁶ см⁻²) его энергетические уровни резко изменяются, а энергетический уровень, генерируемый атомом, сливается в энергетическую зону, поскольку зона проводимости полупроводника близка ниже E_C . Уровни Ферми (E_F) могут подняться выше уровней E_C . Поэтому для имплантированного иона кремния $\Delta E_g = E_g$ - E_C равно 0,7 эВ. Это означает, что при имплантации большой дозы Si(111) с ионом Ba^+ зона ограничения кремния значительно уменьшается. По нашему опыту, наблюдается дальнейшее сокращение запретной зоны. По опыту других авторов уменьшение меньше ($\Delta E_g \sim 0,1$ эВ), что объясняется высокой концентрацией атома Ba, включенного в расчет имплантации. Эти пленки изначально были в виде силицида BaSi, но позже, в результате технологической обработки, образовались наночастицы дисилицида бария с $E_g = 1,4$ -1,6 эВ. Эксперименты показывают, что при имплантации Si(111) ионом кислорода резко изменяются параметры его энергетической зоны.

Объект	Параметры энергетической зоны			
исследования	Ev	E_{F}	E_g	χ
Si(111)	5,1	4,7	1,1	4,0
SiO ₂	9,1	4,5	8,9	0,1-0,2
BaSi ₂	4,0	3,4	1,4	3,3

Из таблицы видно, что ширина полосы нанопленок SiO₂ составляет ~9 эВ, что соответствует величине SiO₂ большой толщины.

- 1. Умирзаков Б.Э., Нормурадов М.Т., Ташмухамедова Д.А., Ташатов А.К. // Монография. Ташкент, 2012, 184 с.
- 2. Slootboon T and Pecraff N. //Solid state elektron, 1976.19. 10. p.857-862.

¹ Каршинский государственный университет, Карши, Узбекистан. *) e-mail: m.normuradov46@mail.ru

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАССЕЯНИЯ ПРИ ПАДЕНИИ АТОМА ВОДОРОДА ПОД ПРЯМЫМ УГЛОМ

Х.И. Жабборов¹, Ю.А. Баимова²

¹Научно-исследовательский институт развития цифровых технологий и искусственного интеллекта, г. Ташкент, Узбекистан

² Институт проблем сверхпластичности металлов РАН г.Уфа, Россия

Для осуществления компьютерного моделирования использовалась программный пакет LAMMPS, который реализует потенциал AIREBO, хорошо описывающий углеродные структуры [1]. Это программа, использованная нами в работе для моделирования при падении атом водорода на графен по прямому углу. Расстояние от поверхности графена до атома водорода равно h= {10, 20} Å. Подбирались энергии величиной от 0.1 эВ до 500 эВ с шагом 5эВ.

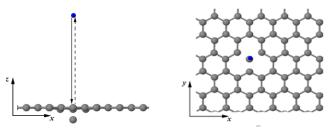


Рис.1. Визуальные представления процесс разрушение при падении атом водорода под прямым углом;

Анализ результатов показало, что процесс разрушения в структуре графене наблюдается при нормальном падение атомов водорода по прицельной точке над атомом графена и в пределах с энергией 57 эВ до 500 эВ.

ЛИТЕРАТУРА

1. Dhaliwal G., Prasanth B.Nair, Chandra V. // Uncertainty analysis and estimation of robust AIREBO parameters for graphene. Carbon Volume 142, February 2019, -pp. 300-310.

АНАЛИЗ ХАРАКТЕРА КОЛЕБАТЕЛЬНЫХ ПРОЦЕССОВ ФУЛЛЕРЕНОВ C_{60} И C_{20} ПРИ ИХ НАГРЕВАНИИ

Ф.Ф. Умаров¹, Д.В. Алябьев^{2*}, И.Д. Ядгаров²

¹Казахстанско-Британский технический университет, Алматы, Казахстан ²⁾ Институт ионно-плазменных и лазерных технологий АН РУз. Ташкент, Узбекистан

С помощью программного пакета LAMMPS, нами были исследованы колебательные процессы атомов в фуллеренах C_{60} и C_{20} для различных температур (10-600K, с шагом в 10K, для каждой температуры были разогреты 1600 фуллеренов C_{20} и 2500 фуллеренов C_{60}). В работе был использован потенциал [1]. Рассмотрены радиальные и угловые колебания атомов фуллеренов. На рис. 1 приведены распределения отклонений от равновесных значений полярного и аксиального углов колеблющихся атомов фуллеренов C_{60} , C_{20} .

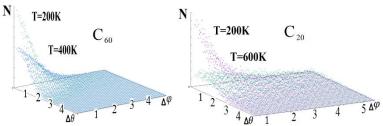


Рис. 1. Распределение количества атомов $n(\Delta\theta,\Delta\phi)$ для фуллеренов C_{60} (слева) и C_{20} (справа)

Анализ полученных данных показывает, что угловые отклонения атомов при колебательных движениях малы (1-2 градуса), основной вклад в колебательные движения вносят радиальные колебания.

ЛИТЕРАТУРА

1. «Interatomic potentials for the Be–C–H system» C Bjorkas et. al. //J. Phys.: Condens. Matter 21 (2009) 445002

МОДЕЛИРОВАНИЕ ПАДЕНИЯ ИОНА С₆₀ НА ПОВЕРХНОСТЬ МОНОКРИСТАЛЛА КРЕМНИЯ

К.П. Карасев^{1*}), Д.А. Стрижкин²), А.И. Титов²), П.А. Карасев²)

Академический ун-т им. Ж.И.Алферова, СПб, Россия
 Политехнический ун-т Петра Великого, СПб, Россия
 e-mail: kir.karasyov2017@yandex.ru

Явления, происходящие на поверхности мишени при бомбардировке монокристалла кремния ускоренными ионами C_{60}^+ представляют большой интерес. На них влияет множество параметров, в частности, энергия фуллерена, плотность тока, материал и температура поверхности и др. Было проведено компьютерное исследование падения молекул C_{60} на (100) поверхность кремния методом молекулярной динамики с использованием потенциалов взаимодействия Tersoff-ZBL и Airebo. Электронные потери — один из факторов, которые необходимо учитывать. Из рис. 1 видно, что при их введении в расчет количество образующихся смещений в максимуме уменьшилось почти на 100, а в насыщении на 50. Также заметно изменяется количество распыленных атомов и другие результаты взаимодействия.

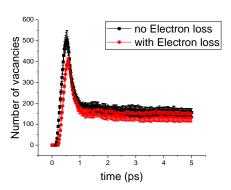


Рис. 1 Количество вакансий, формируемых в кремнии ионом C_{60} с энергией 2 кэВ в зависимости от времени.

В докладе будет выполнен анализ результатов моделирования для энергий падающих ионов C_{60} от 100 эВ до 5 кэВ, температуре системы от 0 до 700 K, углах падения от 0 до 80° .

ЭФФЕКТ ТЕКСТУРЫ ОБОЛОЧКИ УГЛЕРОДНОГО ВОЛОКНА В ИОННО-ЭЛЕКТРОННОЙ ЭМИССИИ

Н.Н. Андрианова¹⁾, А.М. Борисов¹⁾, Е.С. Машкова²⁾, М.А. Овчинников²⁾

¹⁾ МАИ (НИУ), Москва, Россия ²⁾ НИИЯФ МГУ, Москва, Россия

Приводятся результаты измерения температурных зависимостей коэффициента $\gamma(T)$ ионно-электронной эмиссии углерод-углеродного композита КУП-ВМ, при нормальном падении ионов Не+ с энергией 30 кэВ с флюенсами более 10^{18} ион/см². Температуру облучения T варьировали от комнатной до 500°C. Найденное монотонное уменьшение коэффициента у с ростом температуры качественно отличается от ступенчатого роста у, характерного при аналогичном облучении ионами других инертных газов (Ne⁺ и Ar⁺) и азота N₂⁺. Предполагается, что это связано с качественно различным ионно-лучевым модифицированием структуры оболочки волокна ВМН-4, армирующим композит. Для всех ионов, кроме гелия, облучение при повышенных температурах подавляет исходную текстуру, характерную для совершенной графитовой оболочки волокна ВМН-4 /1/. Это приводит при температурах облучения выше температуры $T_{\rm a}$ динамического отжига радиационных нарушений к ступенчатому росту у. При облучении ионами гелия выше T_a текстура оболочки сохраняется, а уменьшение при этом коэффициента у обусловлено известной анизотропией ионно-электронной эмиссии высокотекстурированного пирографита /2,3/. Предполагается также, что качественные различия модифицирования оболочки волокна разного сорта ионами связаны со значительным различием профилей радиационных нарушений при высоких флюенсах облучения.

- Андрианова Н.Н., Борисов А.М., Виргильев Ю.С., и др. Поверхность. 2008. № 5. С.59-63
- 2. Cernusca S, Fursatz M, Winter HP, et.al. Europhys Lett 2005;70(6):768–74.
- 3. Борисов А.М., Виргильев Ю.С., Машкова Е.С., и др. Поверхность, 2006, №1, с. 7-13.

Секция III

ОРИЕНТАЦИОННЫЕ И РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ, ПОТЕРИ ЭНЕРГИИ, ИЗМЕНЕНИЕ ЗАРЯДОВОГО СОСТОЯНИЯ ЧАСТИЦ

О ВОЗМОЖНОСТИ НАБЛЮДЕНИЯ ЭФФЕКТА КВАНТОВАНИЯ ОРБИТАЛЬНОГО МОМЕНТА ПРИ ПРОХОЖДЕНИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ПО ОПТОВОЛОКНУ

Калашников Н.П., Ольчак А.С.

Национальный исследовательский ядерный университет МИФИ, Каширское шоссе 31. Москва 115409, РФ e-mail: kalash@mephi.ru; asolchak@mephi.ru

Процесс распространения оптического излучения в среде с точки зрения квантовой электродинамики представляет собой цепочку поглощений и пере-излучений фотонов атомами и молекулами среды. В результате, средняя скорость распространения потока когерентных фотонов в среде сильно снижается. Факт заметного отличия скорости потока когерентных фотонов в среде от скорости света в вакууме позволяет математически рассмотреть процесс его распространения в так называемой сопутствующей системе отсчета (ССО), эффективно используемой, например, при изучении процесса прохождения и взаимодействия со средой ультрарелятивистских заряженных частиц и гаммаквантов. Такой подход позволяет рассмотреть макроскопические квантовые эффекты (квантование орбитального момента и др.), которые могут проявляться при прохождении лазерного излучения по волоконным световодам.

ЭФФЕКТЫ РЕЗОНАНСНОГО РАССЕЯНИЯ КАНАЛИРОВАННЫХ ЧАСТИЦ С ГЕНЕРАЦИЕЙ ЭЛЕКТРОННЫХ И ФОНОННЫХ ВОЗБУЖДЕНИЙ

Е.А. Мазур^{1,2,*)}

1) Национальный исследовательский центр «Курчатовский институт», Москва, Россия
 2) Национальный исследовательский ядерный университет МИФИ, Москва, Россия
 *) e-mail: eugen mazur@mail.ru

Теоретически исследованы процессы комбинационного рассеяния монохроматической электромагнитной волны на каналированных релятивистских лептонах (электронах, позитронах). испытывающих эффект резонансного рассеяния при малых углах влета относительно кристаллографических плоскостей, а также процессы комбинационного рассеяния на релаксирующей глубоконеравновесной электрон-фононной системе полупроводника, возбужденной релятивистским пучком заряженных лептонов субнаносекундной длительности, направляемым под малым углом $(\theta < \theta_I)$ к кристаллографическим плоскостям. Рассмотрен эффект резонансного рассеяния быстрых релятивистских лептонов при малых углах влета относительно кристаллографических плоскостей. Одновременно рассмотрены с единой точки зрения процессы излучения и генерации возбуждений в кристаллах коллимированным пучком каналированных лептонов, влетающим в монокристалл под малыми углами (как большими, так и меньшими линдхардовского) к кристаллографическим плоскостям. Пробный импульс описанной выше волны синхронизируется с помощью стандартной техники пикосекундной спектроскопии с возбуждающим пучком каналированных частиц с варьируемой временной задержкой, меняющейся в пределах от субпикосекундных до микросекундных времен.

ВЛИЯНИЕ КВАНТОВОГО ТУННЕЛИРОВАНИЯ НА СПЕКТР ЭНЕРГИИ ПОПЕРЕЧНОГО ДВИЖЕНИЯ КАНАЛИРОВАННЫХ ПОЗИТРОНОВ В КРИСТАЛЛЕ КРЕМНИЯ

В.В. Сыщенко 1,* , А.И. Тарновский $^{1)}$, В.И. Дроник $^{1)}$, А.Ю. Исупов $^{2)}$, Н.Ф. Шульга $^{3)}$

¹⁾ НИУ «БелГУ», Белгород, Россия;
 ²⁾ ЛФВЭ, ОИЯИ, Дубна, Россия;
 ³⁾ ХНУ им. В. Н. Каразина, Харьков, Украина
 *) e-mail: syshch@bsu.edu.ru

Явление квантового хаоса проявляется в статистике расстояний между соседними уровнями энергии системы, хаотической в классическом пределе. Особый интерес в этой связи представляют системы, в которых области регулярного движения разделены в фазовом пространстве областью динамического хаоса. В /1/ предполагалось, что такие области порождают две друга последовательности уровней. независимые друг ОТ туннелирование между динамически изолированными друг от друга областями фазового пространства будет приводить к взаимодействию уровней энергии, порождаемых локализованными в таких областях состояниями. Используя параметры такого туннелирования, найденные методом /2/, нами показано, что в случае каналирования позитронов высокой энергии в направлении [100] кремния массив межуровневых расстояний лействительно описывается распределением Подольского-Нариманова /3/.

- 1. Berry M.V., Robnik M. // J. Phys. A.: Math. Gen. 1984. 17. P. 2413.
- Сыщенко В.В., Тарновский А.И., Дроник В.И., Исупов А.Ю. // Поверхность. 2022. № 3. С. 79.
- 3. Podolskiy V.A., Narimanov E.E. // Phys. Lett. A. 2007. V. 362. P. 412.

ADVANCED CHANNELING TECHNOLOGIES: STRONG EXTERNAL ELECTROMAGNETIC FIELDS TO GUIDE CHARGED & NEUTRAL BEAMS

S.B. Dabagov

INFN Laboratori Nazionali di Frascati, Frascati (RM), Italy

*) e-mail: sultan.dabagov@lnf.infn.it

Channeling is the phenomenon well-known in the physics world mostly related to the propagation of the beams of charged particles in aligned crystals. Since the beginning of 1970s channeling of high-energy leptons (electrons/positrons of several MeV up to hundred GeV energies) and hadrons (protons/ions of tens GeV up to several TeV energies) has been applied at various famous world research centers within different national/international projects related to the phenomenon utilization to shape the beams as well as to produce high power X-ray and gamma radiation sources.

However, recent studies have shown the feasibility of channeling phenomenology application for description of other various mechanisms of interaction of charged as well as neutral particles beams in solids, plasmas and electromagnetic fields covering the research fields from crystal/laser/plasma based undulators and collimators to capillary based X-ray and neutron optical elements.

This review talk is devoted to actual channeling-based projects that have been realizing since so-called renaissance of channeling studies started in the end of last century. The future possible developments in channeling physics will be analysed within the presentation.

КАНАЛИРОВАНИЕ РЕЛЯТИВИСТСКИХ ИОНОВ В ПОЛУВОЛНОВОМ КРИСТАЛЛЕ И ЕГО ВОЗМОЖНОЕ ПРИМЕНЕНИЕ

О.В. Богданов 1 , Т.А. Тухфатуллин 1,* , Х. Гиссель 2 , Н. Кузминьчук-Фойерштэйн 2 , С. Пурушотаман 2 , К. Шайденбергер 2

¹⁾ Томский политехнический университет, Томск, Россия
²⁾ Центр по изучению тяжёлых ионов (ГСИ), Дармштадт, Германия
*) tta@tpu.ru

В полуволновом кристалле каналирующая частица испытывает так назывемое «зеркальное отражение» за счет только одного взаимодействия с плоскостью кналирования. Каналирование в полуволновом кристалле наблюдалось для протонов с энергией 400 ГэВ в CERN-SPS /1/ и для электронов с энергией 255 МэВ на установке SAGA-LS /2, 3/. По сравнению с протонами и электронами в случае релятивистских тяжелых ионов (RHI) появляются два дополнительных параметра: заряд иона Ze и массовое число A. Компьютерное моделирование половолнового каналирования изотопов с низким Z /4/ выявило замечательный изотопический эффект.

В данной работе представляны результаты компьютерного моделирования каналирования RHI с большими Z (129 Xe, 208 Pb, 238 U) в кристаллах Si, Ge и W с использованием компьютерного кода BCM-2.0 /5/. Также в работе рассмотрена схема из N последовательно размещенных полуволновых кристаллов, которая позволяет увеличить угол отклонения в N раз. Аналогичная система из нескольких изогнутых кристаллов для отклонения пучка протонов с энергией 1,3 ГэВ была недавно исследована в работе /6/.

- 1. Scandale W et al 2014 Phys. Lett. B 734, 1
- 2. Takabayashi Y et al 2015 Phys. Lett. B 751, 453
- 3. Takabayashi Y et al 2015 Nucl.Instr. and Meth. B 355, 188
- 4. Bogdanov O V et al 2020 Phys. Lett. B 802 135265
- 5. Abdrashitov S V et al 2017 Nucl. Instr. and Meth. B 402, 106
- 6. Chesnokov Y A et al 2017 Nucl. Instr. and Meth. B 402 287

О НЕВОЗМУЩАЮЩЕЙ ДИАГНОСТИКЕ ЭЛЕКТРОННЫХ ПУЧКОВ ВЫСОКИХ ЭНЕРГИЙ С ПОМОЩЬЮ РЕНТГЕНОВСКИХ ЗЕРКАЛ

А.В. Бердниченко, И.Е. Внуков, В.В. Колодочкин, Н.Р. Хачатрян, Р.А. Шатохин

Белгородский государственный национальный исследовательский университет, г. Белгород, Россия

В связи с проектированием линейных электрон-позитронных коллайдеров /1,2/ появилась задача определения параметров пучков релятивистских электронов (E_e >100 ГэВ) с поперечным размером порядка несколько десятков нанометров и расходимостью ~ 10-40 микрорадиан. В этой области размеров пучка традиционные методы измерения с помощью регистрации оптического излучения при пролете частиц через металлические мишени или вблизи них /3/ теряют работоспособность из-за когерентных эффектов в излучении /4/. В /5,6/ предложено оценивать размер пучка из значения эмиттанса и расходимости, которую можно определить из углового распределения дифрагированного излучения.

Обсуждается возможность определения расходимости пучка по угловому распределению дифрагированного дифракционного излучения при пролете частиц вблизи края рентгеновского зеркала, что даст возможность работать с большей длиной волны и проверить возможность реализации метода /5,6/ на существующих ускорителях электронов.

- 1. ILC Technical Design Report, 12 June 2013 // www.linearcollider.org/ILC/TDR
- 2. A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report, 2012.
- 3. G. Kube, in Proceedings of the IBIC2014 2014, P.263.
- 4. H. Loos et al., in Proceedings of FEL08, 2008, P. 485.
- 5. Goponov Yu.A. et al. // NIM, 2016, A808, P. 71.
- 6. Goponov Yu.A. et al. // NIM, 2018, A885, P. 134.

СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ И ИЗМЕРЕНИЙ ИНТЕРФЕРОГРАММ КОГЕРЕНТНОГО ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ

Д.А. Шкитов*), М.М. Токтаганова, Г.А. Науменко, М.В. Шевелёв

Томский политехнический университет, Томск, Россия *) e-mail: shkitovda@tpu.ru

На основе механизма переходного излучения (ПИ), возникающего в процессе пересечения заряженной частицей границы раздела двух сред, в прошлые десятилетия были разработаны методы диагностики размеров пучков современных ускорителей. Недавно был предложен метод диагностики /1/расстояния между сгустками на основе интерферометрии ПИ. Актуальность исследований обусловлена развитием новых способов генерации последовательностей электронных сгустков. В дальнейшем была разработана модель и написан численный код для расчёта автокорреляционной функции (АКФ) ПИ /2/. В данной работе приводится сравнение результатов расчёта, на основе разработанного кода, и измерений АКФ ПИ с помощью интерферометра Мартин-Паплетта. Эксперимент выполнен на выведенном пучке микротрона ТПУ /3/ с энергией 6,1 МэВ, длиной сгустков (СКО) ~3 мм, частотой следования сгустков 2,63 ГГц. Сравнение результатов моделирования и измерений показывает возможность извлечения информации о расстоянии между сгустками в пучке на основе анализа АКФ.

- 1. Токтаганова М.М. // В сб. материалов 59-й Международной научной студенческой конференции. Новосибирск, ИПЦ НГУ, 2021, с. 281.
- 2. Toktaganova M., Shkitov D., Shevelev M. et al. // Proc. of RuPAC'21, Alushta, Russia, JACoW Publ., 2021, p. 413.
- 3. Науменко Г.А., Потылицын А.П., Каратаев П.В. и др. // Письма в ЖЭТФ, 2017, 106, 2, с. 115.

ИССЛЕДОВАНИЕ МОНОЭНЕРГЕТИЧЕСКОГО ПОТОКА ЭЛЕКТРОНОВ ПРИ ПИРОЭЛЕКТРИЧЕСКОМ ЭФФЕКТЕ В МОНОКРИСТАЛЛЕ ТАНТАЛАТА ЛИТИЯ

А.Н. Олейник 1,* , М.Э. Гильц 1 , П.В. Каратаев 2 , А.А. Кленин 1 , А.С. Кубанкин 1,3 , П.Г. Шаповалов 1 , А.В. Щагин 1,4

¹⁾НИУ БелГУ, Белгород, Россия
²⁾ Колледж Ройял Холлоуэй, Эгам, Великобритания
³⁾ ФИАН им. П.Н. Лебедева, Москва, Россия
⁴⁾ ННЦ ХФТИ, Харьков, Украина
^{*)} e-mail: andreyoleynik92@mail.ru

Явление генерации моноэнергетического потока электронов, эмитирующих с поверхности монокристалла ниобата или танталата лития, при изменении его температуры, известно уже более 20 лет 1 , однако полной и непротиворечивой картины данного явления нет до сих пор. Энергия электронов может превышать $100~{\rm kpB^2}$, а сам поток обладает свойством самофокусировки 3 , что делает пироэлектрический ускоритель весьма перспективным для множества различных приложении. Представлены результаты исследования потока электронов в зависимости от давления остаточного газа, а также представлены вольтамперные характеристики лавинного разряда, который возникает в ходе работы пироэлектрического ускорителя.

Исследование выполнено за счет гранта Российского научного фонда № 21-72-00006.

- 1. Brownridge, J.D., Shafroth, S.M., Trott, D.W. // Appl. Phys. Lett. 2004. Vol. 78, P. 1158-1162.
 - 2. Geuther, J.A., Danon, Y. // J. Appl. Phys. 2005. Vol. 97, P. 074109-074117.
- 3. Brownridge, J.D., Shafroth, S.M. // Appl. Phys. Lett. 2001. Vol. 79, P.3364-3366

THEORETICAL AND EXPERIMENTAL STUDY OF THE GUIDING EFFECT FOR 5 keV ELECTRONS

Xulvi R.1, Rojas J.1,*, Nuñez S.1, Irribarra E.1

1) Escuela Politécnica Nacional, Quito, Ecuador *) e-mail: jack.rojas@epn.edu.ec

The guiding effect of electrons has been observed in several works and different models [4],[5] have been developed. However, unlike the guiding effect in ions [3] a generally accepted description of the main mechanisms responsible for the phenomenon does not exist yet. Important questions concerning the energy of transmitted electrons, the role of secondary electrons, and of the charged patch remain open.

In this work, a program in Fortran that simulates elastic scattering processes resulting from the interaction of an electron beam with a dielectric material is written. The initial conditions for the electron trajectories are generated through random sampling of the beam profile and individual electron energies. The dielectric atom positions are generated for a limited spatial region. The resulting particle trajectories and charge distributions in the dielectric material are analyzed, accounting for the deflected as well as impinged electrons. The results are compared with experimental data of the guiding effect for 5 keV electrons.

REFERENCES

- [1] K. Schiessl, K. Tokési, B. Solleder, C. Lemell, and J. Burgdörfer, "Electron guiding through insulating nanocapillaries," Physical Review Letters, vol. 102, no. 16, pp. 1–4, 2009, doi: 10.1103/PhysRevLett.102.163201.
- [2] K. A. Vokhmyanina et al., "The dynamics of the interaction of fast electrons with dielectric surfaces at grazing incidence," Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 379, no. 5, pp. 431–434, 2015, doi: 10.1016/j.physleta.2014.11.041.
- [3] N. Stolterfoht and Y. Yamazaki, "Guiding of charged particles through capillaries in insulating materials," Physics Reports, vol. 629, pp. 1–107, Apr. 2016, doi: 10.1016/J.PHYSREP.2016.02.008.

RELATIVE EFFICIENCY OF THE SPIN CONTRIBUTION ON RADIATION SPECTRUM OF HIGH ENERGY ELECTRONS MOVING IN ORIENTED CRYSTALS AND IN THE FIELD OF INTENSE LASERS

M.Kh. Khokonov, V.S. Lomanosov

Kabardino-Balkarian State University, Nalchik, Russian Federation e-mail: khokon6@mail.ru

The spin contributes the hard part of the radiation spectrum and has been measured two decades ago for above hundred GeV electrons in oriented crystals [1]. The strong field effects for photon emission during channeling of electrons in crystals and that of electrons moving in the field of an intense laser wave manifest themselves at high energies, above several tens of GeV. At such energies, quantum effects in radiation, such as quantum recoil the effect of spin should be taken into account [1]. Accounting for quantum recoil is reduced to the replacement in the classical formulas of the radiation frequency $\omega \to \omega E/(E-\hbar\omega)$, where E is the energy of an electron, whereas the spin term should be considered separately. We do it within the frame of quasiclassical approach [2] (see also [3,4]) and show that that the spin contribution is stronger in the case of lasers than in the case of crystals. Moreover, spin never appears in the dipole spectrum of crystals, but for lasers a quantum dipole spectrum may happen in which the spin contribution is dominant. The latter case corresponds to inverse Compton scattering.

REFERENCES

- 1. K. Kirsebom, et. al. // Phys. Rev. Lett. 87, 054801. 2001.
- 2. V. Baier, V. Katkov, and V. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998).
- 3. A.Kh.Khokonov, M.Kh.Khokonov, A.A.Kizdermishov // Technical Physics, V.47, pp.1413-1419, 2002
- 4. M.Kh. Khokonov and K.V. Efendiev. // Nucl. Inst. Meth. in Phys. Res., B 252, pp.36-43 2006.

ПРИМЕНЕНИЕ МЕДЛЕННЫХ ОСЦИЛЛЯЦИИ ТЕМПЕРАТУРЫ МОНОКРИСТАЛЛА ТАНТАЛАТА ЛИТИЯ ДЛЯ ГЕНЕРАЦИИ СИЛЬНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ

А.Н. Олейник^{1, *}, П.В. Каратаев², А.С. Кубанкин^{1,3}, А.В. Щагин^{1,4}

¹⁾НИУ БелГУ, Белгород, Россия
²⁾ Колледж Ройял Холлоуэй, Эгам, Великобритания
³⁾ ФИАН им. П.Н. Лебедева, Москва, Россия
⁴⁾ ННЦ ХФТИ, Харьков, Украина
^{*)} e-mail: andreyoleynik92@mail.ru

Медленные осцилляции температуры (частота 0.1-100 мГц, амплитуда 0.1-50 °C) монокристалла танталата лития приводят к осцилляциям заряда, индуцируемого на поверхности монокристалла, за счет пироэлектрического эффекта^{1,2}. Данный метод изменения температуры может быть очень полезен для воспроизводимой генерации электрического поля в пироэлектрических ускорителях. Рассматривается влияние частоты и амплитуды температурных осцилляций, толщины монокристалла на электрический отклик.

Работа выполнена при финансовой поддержке конкурсной части госзадания по созданию и развитию лабораторий, проект № FZWG2020-0032 (2019-1569).

- 1. Garn L.E., Sharp E.J., J. App. Phys. 1982, Vol. 53, P. 8974-8980
- 2. Garn L.E., Sharp E.J., J. App. Phys. 1982, Vol. 53, P. 8980-8988

ИССЛЕДОВАНИЕ ЭФФЕКТА ТРАНСФОРМАЦИИ КОНУСА ИЗЛУЧЕНИЯ ВАВИЛОВА-ЧЕРЕНКОВА В GEANT4

- В. И. Дроник 1,* , И.А. Кищин $^{1,2)}$, А. С. Кубанкин 1,2 , Р.М. Нажмудинов $^{1,2)}$
 - 1) Белгородский государственный национальный исследовательский университет, Белгород, Россия
 - ²⁾ Физический институт им. П.Н. Лебедева РАН, Москва, Россия
 *

 *
 e-mail: dronik@bsu.edu.ru

В данной работе представлены результаты моделирования излучения Вавилова — Черенкова (ИВЧ) в рентгеновском диапазоне вблизи линий фотопоглощения для разных углов падения пучка электронов в программном пакете Geant4 /1/.

Было проведено моделирование при разных энергиях электронного пучка (в диапазоне от 7 МэВ до 250 МэВ), проходящего через слой вещества. Показано влияние геометрии мишени на выход ИВЧ. Исследования были проведены для разных сортов мишеней: углерод, титан, ванадий, алюминий. Для углеродной и алюминиевой мишеней был продемонстрирован эффект трансформации конуса ИВЧ, предсказанный в работе /2/. В работе был использован модуль G4OpticalPhysics пакета Geant4.

Работа была выполнена при поддержке гранта Президента РФ для молодых ученых-кандидатов наук МК-1320.2022.1.2.

- 1. GEANT4 collaboration, "GEANT4 9.2 Physics Reference Manual", 442 c, 2018.
 - 2. Gary C., et.al // Nucl. Instr. Meth. Phys. Res. B. 2005. V. 227. P. 95

ВЛИЯНИЕ МОЗАИЧНОСТИ КРИСТАЛЛОВ НА ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ БЫСТРЫХ ЭЛЕКТРОНОВ

И.Е. Внуков * , В.В. Колодочкин, А.С. Склярова, Ю.С. Шаблов

НИУ «БелГУ», Белгород, Россия
*) e-mail: vnukov@bsu.edu.ru

Известно, что мозаичность кристалла существенно влияет на характеристики излучения быстрых электронов, а степень этого влияния зависит от механизма излучения. Интенсивность излучения под брэгтовским углом резко возрастает, и оно становится более узконаправленным за счет дополнительного вклада дифрагированных реальных фотонов переходного и тормозного излучений /1/, пики в спектрах когерентного тормозного излучения и излучения при каналировании, наоборот, становятся менее интенсивными, а их ширина возрастает /2/. Влияние мозаичности кристалла на движение электронов до сих пор практически не изучено.

Измерения ориентационных зависимостей (ОЗ) мягкой компоненты излучения релятивистских электронов в мозаичных кристаллах пиролитического графита показали, что положение максимумов совпадает с углом наблюдения, как и для совершенных кристаллов /З/, но зависимость амплитуд ОЗ от угла наблюдения не описывается теорией многократного рассеяния. Измерения ОЗ полной энергии излучения подтвердили наличие особенностей в угловом распределении электронов в мозаичных кристаллах вплоть до проявления аналога эффекта «фокусировки». Обсуждается возможная причина наблюдаемых эффектов.

- 1. E.A. Bogomazova et al. // NIM B, 2003, V. 201, P. 276
- 2. И.Е. Внуков // //Изв. ВУЗов "Физика", 2002, т.45, № 9, С. 66.
- 3. К.Ю. Амосов и др. // Изв. ВУЗов "Физика", 1991, т.34, № 6, С. 70.

ИСПОЛЬЗОВАНИЕ КРИСТАЛЛОВ С АСИММЕТРИЧНОЙ ГЕОМЕТРИЕЙ ОТРАЖЕНИЯ ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЭЛЕКТРОННЫХ ПУЧКОВ

А.В. Бердниченко¹⁾, И.Е. Внуков^{1,*)}, Ю.А. Гопонов¹⁾, Y. Takabayashi²⁾

1) НИУ «БелГУ», Белгород, Россия
2) SAGA Light Source, Tosu, Saga 841-0005, Japan
*) e-mail: ynukoy@bsu.edu.ru

В рамках развития метода измерения поперечного размера и расходимости пучка релятивистских электронов с помощью регистрации угловых распределений рентгеновского излучения электронов в тонких кристаллах /1,2/ проанализировано влияние асимметрии отражения /3/ на угловое распределение излучения. Асимметрия отражения $\epsilon=\sin(\delta-\Theta_{\rm B})/\sin(\delta+\Theta_{\rm B})$ возникает, когда δ - угол между поверхностью мишени и отражающими плоскостями, развернутыми относительно направления пучка электронов на угол Брэгга $\Theta_{\rm B}$, отличается от нуля или 90 градусов.

Показано, что использование геометрий генерации излучения с $\epsilon > 1$ увеличивает размер образа пучка на детекторе в ϵ раз и позволяет в несколько раз уменьшить нижний предел значений эмиттанса, который можно измерить с помощью методики /2 ℓ .

С целью проверки методики /1/ проведены измерения размера пучка линейного ускорителя Saga-LS /4/ по угловым распределениям параметрического рентгеновского излучения электронов в тонком кристалле кремния, показавшие хорошее согласие с результатами измерений с помощью оптического переходного излучения.

- 1. И.Е. Внуков и др. // Поверхность, 2019, №6, 57.
- 2. Yu.A. Goponov et al. // NIM A, 2021, V. 996, 165132.
- 3. A.V. Berdnichenko et al.// Phys. Let. A, 2021, V. 409, 127537.
- 4. Y. Takabayashi et al. // NIM B, 2017, V. 402, 79.

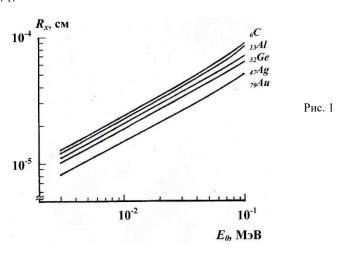
ABOUT RESEARCH OF DECHANNELING LENGTH OF RELATIVISTIC PARTICLES IN CRYSTAL BY SI DETECTOR WITH SMOOTHLY TUNABLE THICKNESS OF DEPLETED LAYER

A.V. Shchagin

Kharkov Institute of Physics and Technology, Kharkov, Ukraine Belgorod National Research University, Belgorod, Russia e-mail: shchagin@kipt.kharkov.ua

In the experimental studies, see, e.g., /1/ a difference between the ionization loss of channeling and non-channeling negatively charged relativistic particles in a thick Si crystalline detector was not observed. However, authors of /2/ predict the sufficient difference if the crystal thickness is comparable to the de-channeling length.

Here, we propose to perform experimental research of ionization loss and dechanneling length of relativistic particles with use of the Si detector with smoothly tunable thickness of the depleted layer. Such detector was proposed in /3/ and has been used in measurements of ionization loss of 1 MeV electrons /3/ and 50 GeV protons /4/. Data on the evolution of the distribution of the ionization loss of channeling particles at the variation of the depleted layer thickness (in which the ionization lass are measured) would allow to check the theory and to determine the dechanneling length /2/.


- 1. D.I. Adeyshvili et al. // Journal of Nuclear Physics 1984, 40, 318-325. In Russian: Д.И. Адейшвили и др. // Ядерная Физика 1984, 40, 318-325.
- 2. S.V. Trofymenko, I.V. Kyryllin. // The European Physical Journal C 2020 80.7 1-6.
- 3. A.V. Shchagin et al. // NIM B 2016, 387, 29-33.
- 4. R.M. Nazhmudinov et al. // NIM B 2017, 391, 69-72.

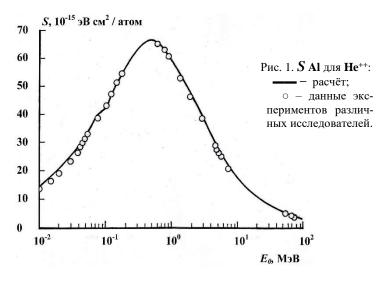
ГЛУБИНА ПРОБЕГА ПУЧКА ПРОТОНОВ В ВЕЩЕСТВЕ ПРИ НОРМАЛЬНОМ ПАДЕНИИ ЧАСТИЦ НА ПОВЕРХНОСТЬ ОБРАЗЦА

Н.Н. Михеев

ЛКМ ИК РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, г. Калуга, Россия

Глубина проникновения сфокусированного ионного пучка в облучаемый твердотельный образец является фундаментальным параметром, определяющим локальность проводимых исследований и протяженность области технологического воздействия. В данной работе представлены полученные в рамках концепции **DSDA** /1/ формулы и результаты модельных расчетов по ним величин пробегов R_x моноэнергетических протонов в углероде, алюминии, германии, серебре и золоте, проведенные для широкого интервала энергий E_θ частиц: от 3 кэВ до 100 МэВ. Рассчитанные зависимости R_x от E_θ для низкоэнергетических протонов представлены на Рис. 1.

ЛИТЕРАТУРА


1. Михеев Н.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 3. С. 94.

ТОРМОЗНАЯ СПОСОБНОСТЬ ВЕЩЕСТВА ДЛЯ ПУЧКА МОНОЭНЕРГЕТИЧЕСКИХ АЛЬФА ЧАСТИЦ

Н.Н. Михеев, И.Ж. Безбах

ЛКМ ИК РАН - филиал ФНИЦ «Кристаллография и фотоника» РАН, г. Калуга, Россия

Представлены результаты использования статистики многократного рассеяния работ /1,2/ для описания зависимости тормозной способности S вещества от энергии E_{θ} пучка альфа частиц. Показано, что применение новой методики, основанной на учете зависимости зарядового состояния ионов пучка от отношения скорости ионов к минимальной скорости атомных электронов вещества, позволяет проводить расчеты S адекватно экспериментальным результатам в широком диапазоне энергий частиц E_{θ} , как это приведено на Puc.1.

- 1. Михеев Н.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2010. № 4. С. 25
- 2. Михеев Н.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 3. С. 94.

ОБРАТНОЕ ТОМСОНОВСКОЕ РАССЕЯНИЕ: ПЕРСПЕКТИВЫ И МОДЕЛИРОВАНИЕ В GEANT4

А.А. Савченко^{1,*}), А.А. Тищенко¹⁾, Д.Ю. Сергеева¹⁾

1) Национальный исследовательский ядерный университет «МИФИ», Москва, Российская Федерация

*) e-mail: aasavchenko1@mephi.ru

Обратное томсоновское рассеяние является перспективным механизмом для создания яркого и компактного источника излучения в рентгеновском диапазоне /1,2/, в связи с чем активно исследуется в последние годы. При наличии развитого физико-математического аппарата, на первые роли выходит компьютерное моделирование явления. В области физики излучения наиболее проработанным и подходящим является программный пакет Geant4 /3/. В настоящем докладе мы описываем общее состояние дел в данной области, включая перспективные направления развития. и представляем результаты разработки нового модуля дискретного физического процесса в Geant4 для моделирования обратного томсоновского рассеяния. Созданный модуль позволяет просчитать взаимодействие электронного пучка с лазерным импульсом, описываемым фиксированной световой мишенью, с рождением фотонов в рентгеновском диапазоне. При этом, в зависимости от задаваемых пользователем параметров электронного пучка, фотоны могут генерироваться как в когерентном, так и некогерентном режимах.

Данная работа была поддержана грантом РФФИ 19-29-12036.

- 1. K. T. Phuoc et al., // Nat. Photonics, 2012, 6, 308.
- 2. G. Sarri et al., // Phys. Rev. Lett., 2014, 113, 224801.
- 3. S. Agostinelli, J. Allison, K. Amako et al., // Nucl. Instrum. Meth. A, 2003, 506, 250.

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ ПРИ ИОНИЗАЦИИ УЛЬТРАРЕЛЯТИВИСТСКИХ ИОНОВ НА ГРАНИЦЕ РАЗДЕЛА ДВУХ СРЕД

М.В. Булгакова, В.С. Малышевский, Г.В. Фомин

Южный федеральный университет, Ростов-на-Дону, Россия e-mail: vsmalyshevsky@sfedu.ru

На основе уравнений макроскопической электродинамики [1] исследованы угловые и спектральные характеристики электромагнитного излучения, сопровождающего ионизацию ультрарелятивистских тяжелых ионов при прохождении границы раздела двух сред. Рассчитано угловое распределение рентгеновского излучения водородоподобных ионов в пластинках золота в направлениях «вперед» (вдоль направления движения ионов) и «назад» (Рис.1).

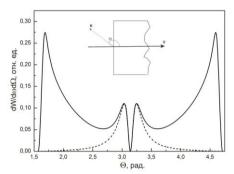


Рис.1 Угловое распределение излучения «назад» в спектральном диапазоне 0,5 кэВ ионов аргона β=0.995 при влете в золотую пластинку в случае полностью ионизованных ионов (пунктирная линия) и с отрывом одного электрона (сплошная линия).

ЛИТЕРАТУРА

1. В.С. Малышевский, И.А. Иванова, Г.В. Фомин // ЖЭТФ. 2016, **149**, 243.

ОРБИТАЛЬНЫЙ УГЛОВОЙ МОМЕНТ ИЗЛУЧЕНИЯ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ, ПРИ ПЛОСКОСТНОМ КАНАЛИРОВАНИИ В КРИСТАЛЛЕ Si

Н.А.Ашурко $^{1)}$, О.В. Богданов $^{2)}$, П.О. Казинский $^{1)}$, Т.А. Тухфатуллин 2,*

1) Томский государственный университет, Томск, Россия

Исследование генерации изучения, обладающего орбитальным угловым моментом (ОУМ) является актуальной областью как теоретических, так и экспериментальных исследований. В ряде работ были предложены различные схемы получения фотонов, несущих ОУМ (т.е. закрученных фотонов): ондуляторы /1-4/, и лазеры на свободных электронах /5/. Закрученные фотоны высоких энергий также могут излучаться каналированными частицами /6, 7/.

Излучение при каналировании плосковолновых фотонов хорошо изучено. Это излучение характеризуется МэВ-ным диапазоном энергий фотонов. Излучение при каналировании имеет ряд преимуществ перед другими типами излучения: узкий спектральный диапазон и направленность. В нашей работе /6/ методом Иваненко-Соколова мы изучили ОУМ на один фотон, генерируемый и электронами при плоскостном и осевом канлировани, в зависимости от угла падения электронов на кристалл.

Целью данной работы является исследование излучения электронов при плоскостном каналировани в терминах закрученных фотонов /3/ и нахождение их энергетического спектра.

- 1. S. Sasaki, I. McNulty 2008 Phys. Rev. Lett. 100 124801
- V.A. Bordovitsyn, O.A. Konstantinova, E.A. Nemchenko 2012 Russian Phys. J. 55 (1) 44
- 3. O.V. Bogdanov et al 2018 Phys. Rev. A 97 033837
- 4. J. Bahrdt et al 2013 Phys. Rev. Lett. 111 034801
- 5. O.V. Bogdanov et al 2019 Phys. Rev. D 99 116016
- 6. S.V. Abdrashitov et al 2018 Phys. Lett. A 382 3141.
- 7. V. Epp, J. Janz, M. Zotova 2018 Nucl. Inst. Meth. B 436 78.

²⁾ Томский политехнический университет, Томск, Россия *) tta@tpu.ru

Секция IV

МОДИФИКАЦИЯ И АНАЛИЗ ПРИПОВЕРХНОСТНЫХ СЛОЕВ ИОННЫМИ И ЭЛЕКТРОННМИ ПУЧКАМИ

ОСОБЕННОСТИ ВОЗДЕЙСТВИЯ МОЩНОГО ИОННОГО ПУЧКА НА ПОЛИЭТИЛЕНТЕРЕФТАЛАТ

В.С. Ковивчак *), Г.А. Болякно

Омский государственный университет им. Ф.М. Достоевского, Омск, Россия

*) e-mail: kvs docent@mail.ru

Модификация поверхностных свойств полимеров, трансформация их поверхностных слоев в наноструктурированный углерод под действием мощного ионного пучка (МИП) наносекундной длительности представляют большой интерес, как с научной, так и с практической точки зрения. Высокие температуры, возникающие при таком воздействии, приводят к плавлению, интенсивному испарению и разложению полимерных материалов. Для большинства полимеров при таком воздействии наблюдается интенсивное порообразование в поверхностном слое.

В работе исследованы особенности воздействия МИП на широко используемый полимер - полиэтилентерефталат (ПЭТ). Облучение образцов проводилось на ускорителе «Темп» протон-углеродным пучком (30% H $^+$ +70% C $^+$, E \sim 200 кэВ, j \leq 150 А/см 2 , τ =60 нсек) при варьировании плотности ионного тока и числа импульсов облучения.

Установлено, что облучение МИП приводит к формированию на поверхности ПЭТ различных поверхностных образований, имеющих внутреннюю периодическую структуру с характерным размером ~ 20 мкм. При этом образование поверхностных пор (прежде всего закрытых или полуоткрытых) минимально по сравнению с другими ранее облученными полимерными материалами. Многократное (>10 импульсов) облучение МИП приводит к образованию на поверхности ПЭТ сложной системы периодических выступов застывшего расплава полимера с периодом ~ 150 мкм. Высота выступов составляет до 80 мкм, а средний диаметр ~ 35 мкм.

Возможные механизмы формирования морфологии ПЭТ при воздействии МИП рассмотрены с учетом особенностей теплофизических характеристик ПЭТ.

ВОЗДЕЙСТВИЕ ПОТОКОВ КИСЛОРОДНОЙ ПЛАЗМЫ НА ПОЛИМЕРНЫЕ НАНОКОМПОЗИТЫ С УГЛЕРОДНЫМИ НАПОЛНИТЕЛЯМИ

И.Д. Парфимович $^{1)*}$, Ф.Ф. Комаров $^{1)}$, Л.А. Власукова $^{1)}$, И.Н. Пархоменко $^{1)}$, Л.С. Новиков $^{2)}$, В.Н. Черник $^{2)}$

БГУ¹⁾, Минск, Беларусь¹⁾, НИИЯФ МГУ²⁾, Москва, Россия
**) e-mail: irongrivus71@gmail.com, komarovff@mail.ru
vlachernik@yandex.ru

В связи с развитием программы долговременных орбитальных космических полетов все большее внимание уделяется проблеме стойкости наружных поверхностей космических аппаратов к воздействию факторов космического пространства. Особое место занимают полеты на низких околоземных орбитах (200-600 км), на которых функционирует МКС и многие другие космические аппараты. На этих высотах наибольшие повреждения многих функциональных материалов связаны с набегающим потоком атомарного кислорода (АК). Как показали результаты предыдущих исследований, низкую стойкость к воздействию кислородной плазмы проявляют полимерные и углеродсодержащие материалы. Под действием АК ухудшаются многие функциональные характеристики материалов, такие, как коэффициенты отражения солнечного излучения, коэффициенты черноты, коэффициенты отражения микроволнового излучения и электропроводности. Для исследования стойкости подобных материалов проводят наземные лабораторные ускоренные испытания в потоках кислородной плазмы.

В докладе приводятся результаты исследований воздействия АК на эпоксидные полимерные нанокомпозиты с добавлением графена и углеродных нанотрубок. Обсуждаются эрозия поверхности, деградация оптических и микроволновых характеристик и электропроводности эпоксидных нанокомпозитов.

ОПРЕДЕЛЕНИЕ ЛОКАЛЬНОЙ АТОМНОЙ СТРУКТУРЫ ПО ПЕРЕКРЫВАЮЩИМСЯ EXELFS СПЕКТРАМ

Э.Ф. Хаметова^{1,2,*)}, О.Р. Бакиева²⁾

1) Удмуртский государственный университет, Ижевск, Россия
2) ФТИ УдмФИЦ УрО РАН, Ижевск, Россия
*) e-mail: elinaphanilevna851@gmail.com

В настоящее время самые актуальные разработки и инновации сконцентрированы вокруг материалов с низкой размерностью — это и сложная наноструктурированная керамика, и нанокомпозитные материалы для фотоники, и топологические сверхпроводники для нового поколения квантовых компьютеров. Одним из основных инструментов исследования локальной атомной структуры материалов является метод спектроскопии EXAFS (Extended X-ray Absorption Fine Structure) и EXELFS (Extended Electron Energy Loss Fine Structure). Анализ таких спектров дает информацию о парциальных координационных числах, длинах связи и параметрах их дисперсии. Однако, при исследовании многокомпонентных систем, до сих пор существует проблема анализа спектров, в которых происходит наложение сигналов нескольких химических элементов в одном энергетическом диапазоне.

В данной работе предложен метод решения проблемы перекрывающихся диапазонов экспериментальных EXELFS сигналов в геометрии эксперимента «на просвет», который реализуется в просвечивающих электронных микроскопах. Количественный анализ экспериментальных EXELFS спектров проведен методом Фурье с использованием пакета программ Ifeffit.

ЛИТЕРАТУРА

1. Nemtsova O., Bakieva O., Electron energy loss spectroscopy equation for spectra with overlapping oscillations and its solution by a regularization method, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, **2016**, 368, 103-111.

ИЗУЧЕНИЕ МОДИФИЦИРОВАННОЙ ВНЕШНЕЙ ПОВЕРХНОСТИ ОБОЛОЧКИ ТВЭЛА ИОННО-ПУЧКОВЫМИ И РЕНТГЕНОВСКИМИ МЕТОЛАМИ

Е.В. Егоров 1,2* , В.К. Егоров 1 , П.С. Джамаев 3

ИПТМ РАН, Черноголовка, Россия
 ИРЭ РАН, Фрязино, Россия
 МИФИ, Москва, Россия
 e-mail: egorov@iptm.ru

Базовым узлом современных водо-водяных энергетических реакторов (ВВЭР) является тепловыделяющий элемент (ТВЭЛ), представляющий собой тонкостенную цилиндрическую оболочку, в которую помещено ядерное топливо. Выделение тепла происходит в результате торможения в материале топлива ядерных осколков, возникающих в процессе распада ядер урана под воздействием потока тепловых нейтронов. Тепло через оболочку передается теплоносителю – пароводяной смеси, имеющей в зоне контакта с оболочкой температуру 300-350°С. Наиболее подходящим материалом для изготовления оболочки ТВЭЛа, как оказалось является сплав циркония Э-110, содержащий 1% ат. атомов Nb, но опыт показал недостаточную коррозионную стойкость этого материала и инициировал работы по модификации внешней поверхности оболочки ТВЭЛов. В наших исследованиях изучалась возможность модификации поверхностного слоя оболочки путем нанесения хромовых покрытий с добавлением атомов Мо. Nb. Cu и Fe с последующим внедрением атомов покрытий в этот слой либо путем облучения потоками Хе или Аг, или в результате температурной диффузии. Экспериментальные исследования выполнялись методами POP ионов He+ и H+, PIXE и РФА ПВО. Они показали, что атомы Cr хорошо адаптируются в поверхностном слое оболочки, образуя твердый раствор в пирконии, а при больших концентрациях и стехиометрический интерметаллил ZrCr₂.

Работа выполнена в рамках Гос. заказа №075-00706-22-00 и Гос. темы «Создание и исследование хромосодержащих покрытий на оболочке ТВЭЛа».

СОСТАВ И СТРУКТУРА ГЦК-СТРУКТУРИРОВАННЫХ ВЫСОКОЭНТРОПИЙНЫХ СПЛАВОВ, ОБЛУЧЕННЫХ ИОНАМИ ГЕЛИЯ

В.В. Углов^{1,*}), И.А. Иванов²⁾, С.В. Злоцкий¹⁾, Н.А. Степанюк¹⁾, А.Е. Рыскұлов²⁾, Л.А. Козловский²⁾, А.Е. Курахмедов²⁾, Д.А. Мустафин²⁾, Ә.Д. Сапар²⁾, Ә.М. Темір²⁾

1) Белорусский государственный университет, Минск, Беларусь 2) Институт ядерной физики МЭ РК, Нур-Султан, Казахстан *) e-mail: uglov@bsu.by

Высокоэтропийные (ВЭСы) сплавы NiCoFeCrMn и NiCoFeCr были получены с использованием металлов высокой чистоты (>99,9%) методом дуговой плавки с последующей гомогенизацией. Далее проводился отжиг на протяжении 24 ч и 72 ч при температуре 1150°C с промежуточной холодной прокаткой до 85 % сокращения толщины.

Исследования полученных образцов показали, что они являются крупнозернистыми (размер зерен 100-80 мкм) однофазными сплавами с ГЦКрешеткой, с околоэквиатомным составом и однородным распределением элементов по поверхности и глубине. Выявлено, что внутренние напряжения в ВЭСах являются растягивающими и составляю 100-200 МПа.

Методами рентгеноструктурного анализа и растровой электронной микроскопии установлено, что морфология поверхности и фазовый состав образцов являются устойчивыми к облучению ионами низкоэнергетическими (40 кэВ) ионами гелия до флюенса 3×10^{17} см⁻².

Облучение ионами гелия приводит к росту параметра решетки ВЭСов и к уменьшению размеров их ОКР. Также обнаружено, что облучение ионами гелия приводит к формированию сжимающих напряжений, составляющих 400-500 МПа. В работе обсуждаются механизмы образования и роста радиационных дефектов в ВЭСах и влияния их на уровень внутренних напряжений.

ВЛИЯНИЕ ИМПЛАНТАЦИИ ИОНОВ НА СОСТАВ И ЭМИССИОННЫЕ СВОЙСТВА ПОВЕРХНОСТИ W, WO2

Б.Е. Умирзаков, Д.А. Ташмухамедова, М.Б. Юсупжанова, Ф.Я. Худайкулов, А.А. Камолов, А. Жураев

Ташкентский государственный технический университет, Ташкент, Узбекистан. e-mail: ftmet@mail.ru

В настоящее время хорошо изучены состав, структура и физические свойства W с тонкопленочными покрытиями Cu, Ag, а также сплавов металлов группы железа /1/. В последние годы метод низкоэнергетической ионной бомбардировки широко используется для получения наноразмерных структур и модификации свойств поверхности полупроводников и диэлектрических пленок /2, 3/. В данной работе впервые изучено влияние имплантации ионов Ва+ на состав и эмиссионные свойства монокристаллического W(111) и WO₂. Показано, что при имплантации ионов Ba+ в W в приповерхностном слое формируются механическая смесь атомов [Ba + W]. При $E_0 = 0.5$ кэВ толщина этого слоя составляет ~ 25 – 30 Å. Вследствие уменьшения работы выхода и увеличения атомной плотности ионно-имплантированных слоев значения максимального коэффициента вторичной электронной эмиссии σ_m и квантового выхода фотоэлектронов У существенно увеличивается. При прогреве системы [Ва + W] до Т = 900 К не наблюдается образование химической связи между атомами Ва и W. В случае имплантации ионов Ва⁺ в WO₂ в приповерхностном слое образуется соединения типа W - O, Ba - O и Ba - O - W. В этом случае рост σ_m и Y объясняется только уменьшением работы выхода поверхности.

ЛИТЕРАТУРА

- 1. Шурдумов Г.К., Карданова Ю.Л., Буздов К.А. и др. // Химия в интересах устойчивого развития. 2015. 23. С. 291.
- Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рент.,синхрот. и нейт. исс. 2015. № 4. С. 38.
- 3. Умирзаков Б.Е., Нормурадов М.Т., Ташмухамедова Д.А., Ташатов А.К. Наноматериалы и перспективы их применения. Ташкент: MERIYUS, 2008. 256 с.

ИЗМЕНЕНИЕ ЛОКАЛЬНОЙ АТОМНОЙ СТРУКТУРЫ СПЛАВА Fe-Ni В РЕЗУЛЬТАТЕ ОБЛУЧЕНИЯ ИОНАМИ АРГОНА

И.К Аверкиев 1,* , Т.М. Цеймехструк $^{2)}$, О.Р. Бакиева $^{1)}$

УдмФИЦ УрО РАН, Ижевск, Россия Удмуртский Государственный Университет, Ижевск. Россия

e-mail: averkiev1997@mail.ru

Классическими методами исследования локальной атомной структуры являются мёссбауэровская спектроскопия, спектроскопия EXAFS (Extended X-ray Absorption Fine Structure) и EXAFS подобные методики. В настоящей работе для анализа изменений в локальной атомной структуре сплава Fe-Ni использовался метод спектроскопии EXEELFS (Extended Electron Energy Loss Fine Structure) в геометрии отражения от поверхности. В данном методе используется возбуждение внутреннего уровня атома вещества моноэнергетичным электронным потоком и регистрируется результат когерентного рассеяния вторичного электрона на локальном атомном окружении возбуждаемого атома. В результате спектры EXELFS также, как и EXAFS содержат информацию о параметрах локальной атомной структуры.

В настоящей работе проведено исследование изменений парциальных координационных чисел, длин химической связи и параметров их дисперсии, вызванных радиационным воздействием ионами артона на поверхность сплава Fe-Ni. Облучение проведено в импульсно-периодическом режиме с длительностью импульсов I мс и частотой следования $100~\Gamma$ ц, плотностью тока в импульсе $100~\rm mkA/cm^2$, флюенс $10^{17}~\rm uoh/cm^2$, энергия ионов аргона составляла $30~\rm kpg$.

Работа выполнена в рамках госзадания № №121030100002-0. Работа выполнена с использованием оборудования ЦКП «Поверхность и новые материалы».

РАСПЫЛЕНИЕ АТОМОВ МЕТАЛЛОВ КИЛЬВАТЕРНЫМ ПОТЕНЦИАЛОМ, ВОЗБУЖДЕННЫМ ЭЛЕКТРОННЫМ ПУЧКОМ

Н.П. Калашников

НИЯУ МИФИ, Москва, Россия

Рассматривается процесс распыления атомов металла при коронном разряде на поверхности серебра. При движении электрона в среде с некоторой скоростью, экранирование заряда происходит с запаздыванием в пространстве и во времени, что приводит к возникновению кильватерного потенциала. Возбужденные колебания кильватерного заряда приводят к появлению дополнительных сил. Потери энергии движущейся частицей на единице пути определяются работой, производимой силой торможения, которая действует на частицу со стороны создаваемого ею в среде кильватерного потенциала. В работе рассматривается воздействие кильватерного потенциала на ионы (атомы) матрицы решетки. Используется известное выражение для кильватерного потенциала, возбуждаемого заряженной частицей, движущейся с энергией, большей энергии Ферми. Получено выражение для сечения распыления атомов металла под действием кильватерного потенциала, возбужденного электронным пучком. Показано, что результат распыления не зависит от знака заряда падающей частицы (электрона или иона). Оценивается величина коэффициента распыления при коронном разряде на поверхности серебра.

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ МИКРОСТРУКТУРЫ ТОНКИХ ПЛЕНОК СПЛАВОВ АЛЮМИНИЯ НА СТЕКЛЯННЫХ ПОДЛОЖКАХ

И.И. Ташлыкова-Бушкевич 1,* , И.А. Столяр $^{2)}$

 $^{1)}$ Белорусский госуниверситет информатики и радиоэлектроники, Минск, Беларусь

2) Белорусский госуниверситет, Минск, Беларусь,

*) e-mail: iya.itb@bsuir.by

В настоящее время ионно-лучевые методы осаждения покрытий позволяют синтезировать оптические пленки металлов на стекле с уникальными физико-механическими свойствами для устройств современной электроники и солнечной фотоэнергетики. Цель данной работы – установить закономерности формирования микроструктуры тонких пленок алюминия и его сплавов на стеклянных подложках, полученных методом осаждения при ассистировании собственными ионами при гипервысоких скоростях охлаждения, достигающих 10¹²-10¹³ К/с. Пленки Al и его бинарных слаболегированных сплавов с хромом, марганцем, железом и никелем, осажленные на стекло с использованием резонансного ионного источника вакуумной электродуговой плазмы, были исследованы на атомно-силовом микроскопе NT-206 в контактном режиме и микроскопе марки LEO1455VP с приставкой "HKL CHANNEL5" в режиме регистрации обратно отраженных электронов при ускоряющем напряжении 20 кВ. Для комплексного исследования морфологии и шероховатости пленок построены гистограммы распределения высот и впадин нанорельефа поверхности, а также выполнена аппроксимация частотных распределений размеров микрокапельной фракции с помощью стандартных статистических методов. Полученные результаты демонстрируют потенциальные возможности применения метолов ионного ассистирования для создания тонких пленок сплавов алюминия в качестве лицевых контактов тонкопленочных солнечных элементов для повышения эффективности современных преобразователей солнечной энергии.

ИССЛЕДОВАНИЕ СТРУКТУРНО-ФАЗОВЫХ ИЗМЕНЕНИЙ В ПОВЕРХНОСТНЫХ СЛОЯХ БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВА Al-Mg-Li-Sc-Zr ПОСЛЕ ТЕРМООБРАБОТКИ

И.А. Столяр 1,* , В.Г. Шепелевич 1 , И.И. Ташлыкова-Бушкевич 2 , Е. Wendler 3

¹⁾ Белорусский госуниверситет, Минск, Беларусь,
²⁾ Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь,
²⁾ Университет им. Ф. Шиллера, Йена, Германия

*) e-mail: uyluana@gmail.com

Алюминий-магниевые сплавы с литием, легированные редкоземельными и переходными элементами, являются перспективным классом алюминиевых сплавов, которые характеризуются высоким уровнем физико-механических и коррозионных свойств. Поэтому научно-практический интерес представляет детальное изучение зависимости микроструктуры и элементного состава приповерхностных слоев быстрозатвердевшего (БЗ) промышленного сплава Al-Mg-Li-Sc-Zr (1421) от температуры отжига для определения структурнофазовой стабильности материала.

В работе представлены результаты комплексных исследований структурно-фазовых превращений в приповерхностных слоях БЗ фольг Al–5,8% Mg–8,1% Li–0,03% Zr–0,11% Sc (ат.%) после отжига. Картирование и сканирование распределения элементов вдоль линии было выполнено на растровом электронном микроскопе LEO1455VP с приставкой "HKL CHANNEL5". Методом мгновенных ядерных реакций измерялись спектры протонов энергии 1,4 МэВ с использованием реакции 7 Li(p, α)4He на ускорителе-тандентроне (3 МэВ) JULIA.

Определено неравномерное распределение химических элементов в отожженных образцах. Установлена зависимость содержания Li в тонком приповерхностном слое фольг от температуры отжига. При высокотемпературном отжиге обнаружено, что на поверхности фольг концентрация Li превышает его содержание на глубине более, чем в 3 раза.

ИОННО-ЛУЧЕВОЕ ФОРМИРОВАНИЕ НАНОВКЛЮЧЕНИЙ Ga2O3

Д.С. Королев*), А.А. Никольская, К.С. Матюнина, А.Н. Михайлов, А.И. Белов, А.В. Нежданов, Р.Н. Крюков, Д.И. Тетельбаум

ННГУ им. Н.И. Лобачевского, Нижний Новгород, Россия *') e-mail: dmkorolev@phys.unn.ru

В последнее время исследование материалов на основе оксида галлия приобретает огромную популярность благодаря перспективе его применения в приборах силовой электроники, в качестве солнечно-слепых фотодетекторов и газовых сенсоров. Однако, использование монокристаллических подложек ограничивается их высокой стоимостью, а технологии осаждения тонких пленок различными методами еще не позволяют воспроизводимо получать структуры с заданными характеристиками. В данной работе нами предлагается новый метод синтеза Ga_2O_3 — создание нанокристаллов (НК) этого соединения в диэлектрических матрицах с применением ионной имплантации и последующего отжига.

Исследуемые образцы были получены путем имплантации в пленки SiO₂/Si и Al₂O₃/Si ионов галлия и кислорода с энергиями, обеспечивающими совпадение расчетных максимумов профиля распределения имплантированных атомов. Постимплантационный отжиг проводился при температурах 300-900 °С. Исследование химического состава образцов показало формирование связей Ga-O сразу после облучения, причем их концентрация сильно зависит от типа матрицы. Структура сформированных НК Ga₂O₃ исследовалась методом Рамановского рассеяния. В докладе также приведены результаты исследований светоизлучающих свойств синтезированных образцов.

Исследование выполнено за счет гранта Российского научного фонда № 21-79-10233, https://rscf.ru/project/21-79-10233/.

ИССЛЕДОВАНИЕ ФОРМИРОВАНИЯ НАНОКЛАСТЕРОВ В КРИСТАЛЛИЧЕСКОГО КВАРЦЕ, ИМПЛАНТИРОВАННОМ ЦИНКОМ

В.В. Привезенцев $^{1)}$, В.С. Куликаускас $^{2)}$, В.В. Затекин $^{2)}$, Е.П. Кириленко $^{3)}$, А.Н. Терещенко $^{4)}$

¹⁾ ФНЦ НИИСИ РАН, Москва, Россия ²⁾ НИИЯФ, МГУ, Москва, Россия ³⁾ ИНМЭ РАН, Москва, Россия ⁴⁾ ИФТТ РАН, Черноголовка, Московская обл., Россия

Представлены результаты исследования кристаллического кварца, имплантированного цинком и отожженного в окислительной атмосфере.

Кристаллические кварцевые подложки толщиной 0.25мкм были имплантированы ионами 64 Zn $^+$ с дозой 8×10^{16} /см 2 и энергией 40кэВ. Подложки отжигались на воздухе в течение 1часа в диапазоне температур 400-800°C с шагом 100°C.

Профили имплантированного цинка были исследованы методом резерфордовского обратного рассеяния ионов He^+ с энергией $2M \ni B$. Химическое состояние цинка и его картирование при послойном анализе проводились методом Оже электронной спектроскопии. Образцы также исследовались с помощью фотолюминесценции ($\Phi \Pi$) в видимой области спектра.

После имплантации максимум концентрации цинка находится на глубине 30нм. При отжигах концентрационные профили имплантированного Zn имеют тенденцию перемещаться к поверхности образца. После имплантации в приповерхностном слое кварца образуются нанокластеры металлического Zn с размером около 10нм. После отжига при 700°С образуются нанокластеры ZnO с размером 20-50нм. После имплантации наблюдается значительный пик ФЛ на длине волны 430нм, вызванный дефектами в кварце вакансионного типа. По мере отжигов происходит постепенное уменьшение количества этих дефектов, а после отжига при 700°С появляется мощный пик ФЛ на длине волны 380нм, вызванный образованием фазы оксида цинка ZnO.

ВЛИЯНИЕ ХИМИЧЕСКОЙ ПРИРОДЫ ИМПЛАНТИРОВАННЫХ В СИСТЕМУ SiO₂/Si ATOMOB НА ФОРМИРОВАНИЕ И СВОЙСТВА ФАЗЫ 9R-Si

А.А. Никольская 1), Д.С. Королев 1), А.Н. Михайлов 1), А.И. Белов 1), А.А. Конаков 1), Д.А. Павлов 1), А. Galeckas 2), А.Ю. Азаров 2), А.Ю. Кузнецов 2), Д.И. Тетельбаум 1

ННГУ им. Н.И. Лобачевского, Нижний Новгород, Россия University of Oslo, Oslo, Norway

Под действием внешних условий полупроводники могут образовывать метастабильные политипы, что приводит к изменению их свойств. Для кремния продемонстрировано улучшение его оптических свойств при переходе к гексагональной структуре, что открывает возможность использования кремния в оптоэлектронике и кремниевой фотонике. Ранее нами уже было продемонстрировано получение гексагонального политипа кремния фазы 9R-Si с помощью ионной имплантации. Установлено, что включения данной фазы обладают фотолюминесценцией (ФЛ) при ~ 1240 нм, интенсивность которой превышает ФЛ кубического кремния.

В настоящей работе показано, что существенное влияние на формирование и светоизлучающие свойства фазы 9R-Si оказывает сорт ионов, выбранных для имплантации системы SiO₂/Si с последующим отжигом. Использовались атомы инертного газа Kr, а также атомы химически активного элемента As. Установлено, что наилучший результат, с точки зрения фотолюминесцентных свойств образцов, достигается при имплантации ионов As⁺. Это связано с химической природой данных атомов, которые обладают большими атомным радиусом и массой и низкой аут-диффузией в пленке SiO₂ при отжиге, что приводит к длительной генерации механических напряжений, необходимых для формирования фазы 9R-Si.

Работа выполнена при поддержке РФФИ (№20-32-90204), а также частично в рамках Гранта Президента РФ (МК-4092.2021.1.2).

FOCUSED ION BEAMS AND COMPLEMENTARY TECHNIQUES FOR STUDY OF THE SILVERING PROCESS OF ANCIENT ROMAN COINS

E.A. Sozontov *), E.A. Greshnikov, I.N. Trunkin, L.I. Govor, V.A. Kurkin

National Research Center "Kurchatov Institute", Moscow, Russia
*) e-mail: esozontov@yahoo.com

Monetary system in ancient time was a challenging task, influenced by economic crisis, availability of metal sources and monetary reforms. In particular, the Ag content of the currency minted for about sixty years by the Antoninii emperors reflected the economic health or crisis of the Roman Empire. At the beginning, the Antoninianus denomination was a silver-rich coin (up to 80% of Ag), but gradually was devalued becoming a bronze coin with a very low content of silver (about 3% of Ag).

Two of ancient Roman silver coins, dating back between III-IV Centure AD have been characterized. We used a set of modern micro- and non-invasive analytical techniques: Focused Ion Beam - Field Emission Scanning Electron Microscopy - Energy Dispersive X-ray Microanalysis (FIB-FESEM-EDXM), Scanning Electron Microscopy (SEM-EDX), Micro-X-ray Fluorescent analysis (μ XRF), Neutron Radiation Analysis (NRA) that offers the most advantageous means of obtaining access to the bulk composition and other complementary methods.

The results revealed that a complex Ag-Cu and Ag-Cu-Pb-Sn alloys was used. The use of alloys was common in the flourishing years of the Roman Empire. In the prosperous periods, Romans produced Ag-Cu alloys with relatively high silver content for the manufacture of both the external layers and inner nucleus of coins. This study also revealed that, although surface silvering processes were applied in different periods of crisis under the reign of Antoninii, even during crisis, Romans produced Antoninianus of high quality. It possible, moreover, a first attempt to improve the silvering procedure using Hg-Ag amalgam has been identified, because Hg was detected in the upper silver layer of coins.

ВЛИЯНИЕ ПЛОТНОСТИ КАСКАДОВ НА НАКОПЛЕНИЕ РАДИАЦИОННЫХ ПОВРЕЖДЕНИЙ В α -Ga₂O₃

А.И. Титов 1 , К.В. Карабешкин 1 , А.И. Стручков 1 , П.А. Карасев 1 , А.Ю. Азаров 2 , Д.С. Гогова 3

¹⁾Политехнический ун-т Петра Великого, СПб, Россия ²⁾Университет Осло, Осло, Норвегия ³⁾Болгарская академия наук, София, Болгария

Оксид галлия является весьма многообещающим полупроводником для использования в приборах высокой мощности и оптоэлектронике. Хорошо известно, что имплантация ионов всегда сопровождается образованием в мишени радиационных дефектов, причем эффективность их накопления может в большой мере зависеть от плотности каскадов столкновений /1/.

В настоящей работе проводилось облучение α -Ga₂O₃ атомарными ионами P и молекулярными ионами PF₄ при различных плотностях тока с целью определения влияния плотности каскадов на дефектообразование.

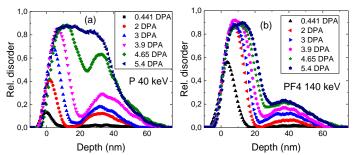


Рис. 1 Профили относительного разупорядочения α -Ga₂O₃ после облучения ионами (a) Р 40 кэВ (b) PF₄ 140 кэВ до указанных доз.

Показано, что результирующее разупорядочение существенно изменяется как при переходе от атомарных ионов к молекулярным, так и при изменении плотности тока.

ЛИТЕРАТУРА

1. S.O. Kucheyev, et al. // J. Phys. D, 2009, 42, 085309.

ОСОБЕННОСТИ АНАЛИЗА ЗАЩИТНЫХ ПОКРЫТИЙ МЕТОДОМ ЯДЕРНОГО ОБРАТНОГО РАССЕЯНИЯ

Н.В. Ткаченко^{1),*}, А.И. Каменских¹, С.А. Тюфтяков²⁾ ¹⁾НИИЯФ МГУ им. Д.В. Скобельцына, Москва, Россия ^{*)} e-mail: nicki tkak@mail.ru

Для исследования состава, структуры, толщины, пористости и других характеристик защитных покрытий в настоящее время используется большой набор химических и физических методик, а в последние годы и ядернофизических. В данной работе рассмотрено применение спектрометрии ядерного обратного рассеяния (ЯОР) [1] для анализа защитных покрытий на примере диоксид циркониевых покрытий, применяемых в атомной энергетике и аэрокосмической отрасли, показано влияние таких свойств покрытий, как пористость (Рис.1) и неоднородность, на точность проводимого анализа и предложены методики для повышения аналитических возможностей метода.

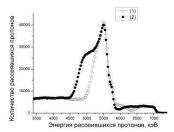


Рис.1 Сравнение спектров ЯОР для образцов с одинаковыми геометрическими толщинами, но разными общими пористостями 22% (1) и 28% (2)

ЛИТЕРАТУРА

1. Востриков В.Г., Каменских А.И., Ткаченко Н.В., // Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2020, № 1, 28-35.

СОСТАВ И КОРРОЗИОННЫЕ СВОЙСТВА СЛОЕВ, ФОРМИРУЕМЫХ В ПРОЦЕССАХ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ СПЛАВОВ ТИТАНА

В.В.Поплавский I^{1*}), И.Л. Поболь I^{2}), И.П. Смягликов I^{2} 0, О.Г. Бобрович I^{1} 1, А.Н. Дробов I^{2} 2, В.Г. Матыс I^{1} 3

1) Беларусский государственный технологический университет, Минск, Беларусь

²⁾ Физико-технический институт НАН Беларуси, Минск, Беларусь *) e-mail: vasily.poplav@tut.by

В работе представлены результаты исследований с применением EDX и RBS состава слоев, формируемых на поверхности титановых сплавов в процессах:

- ионно-плазменного осаждения нитрида хрома и оксикарбида хрома из катодно-дуговой эрозионной плазмы;
- легирования поверхности посредством ионно-ассистируемого осаждения металлов из плазмы вакуумного дугового разряда;
- азотирования в плазме тлеющего разряда, возбуждаемого в атмосфере газовой смеси, состоящей из 90% Ar и 10% N_2 .

Исследована устойчивость сплавов титана с модифицированной в процессах ионно-плазменной обработки поверхностью к электрохимической коррозии в растворе $1 \mathrm{M} \ \mathrm{H}_2 \mathrm{SO}_4 + 2 \cdot 10^{-6} \mathrm{M} \ \mathrm{H}\mathrm{F}$, моделирующем условия работы токовых коллекторов топливных элементов с полимерным мембранным электролитом Nafion, материал которого представляет собой фторуглеродный полимер, содержащий сульфогруппы; в условиях работы топливного элемента рабочие поверхности токовых коллекторов, контактирующие с мембранно-электродным блоком, подвержены электрохимической коррозии вследствие достаточно высокой агрессивности среды, содержащей анионы SO_4^- и F^- .

ДЕФЕКТООБРАЗОВАНИЕ В АРСЕНИДЕ ГАЛЛИЯ ПРИ ИМПЛАНТАЦИИ ИОНОВ АЛЮМИНИЯ И ФОСФОРА

О.Г. Бобрович

Белорусский государственный технологический университет, Минск, Беларусь e-mail: olegbobrovich@yandex.ru

В настоящей работе методом резерфордовского обратного рассеяния ионов гелия в сочетании с каналированием (РОРКИ) исследовано дефектообразование в кристаллах (111) GaAs, имплантированных ионами алюминия энергией 60 кэВ и дозами $4,0\cdot10^{13}$ Al $^+$ /см $^2-8,1\cdot10^{15}$ Al $^+$ /см 2 при комнатной температуре и фосфора с энергией 60 кэВ до дозы $4,0\cdot10^{14}$ P $^+$ /см 2 после термического отжига в интервале температур 150-450 °C.

Установлено, что при увеличении дозы до $4,1\cdot10^{15}$ Al $^+$ /см 2 наступает аморфизация приповерхностного слоя кристалла, а при дальнейшем увеличении дозы до $8,1\cdot10^{15}$ Al $^+$ /см 2 происходит уширение толщины аморфного слоя. Имплантация при комнатной температуре ионов алюминия до доз $1,4\cdot10^{15}$ Al $^+$ /см 2 не приводит к аморфизации поверхностного слоя.

При термическом отжиге кристаллов GaAs имплантированных ионами фосфора происходит не только снижение концентрации первичных радиационных дефектов, но и их перестройка, что следует из анализа изменения уровня деканалирования за пиком повреждений на спектрах РОРКИ, которое может быть также связано с формированием в арсениде галлия дефектов структуры разного типа. При температуре отжига $t=350^{\circ}\mathrm{C}$ значение слоевой концентрации дефектов снижается в два раз, а при температуре $t=450^{\circ}\mathrm{C}$ – в три раза в сравнении со слоевой концентрацией дефектов исходного не отожженного образца, которая составляла $2,7\cdot10^{17}$ ат/см².

ВЛИЯНИЕ ИОННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ НА ГЕНЕРАЦИЮ ЭДС И ТОКОВ В ПЛЁНОЧНЫХ СТРУКТУРАХ Si-Ge/Si

Ш.К. Кучканов 1 , Х.Б. Ашуров 1 , М.М. Адилов 1 , А.И. Камардин 2 , С.Е. Максимов 1 , Ш.Т. Хожиев 3

¹Институт ионно-плазменных и лазерных технологий Академии Наук РУз, Ташкент, Узбекистан;
²НТЦ с КБ и ОП Академии Наук РУз,
³Институт биоорганической химии Академии Наук РУз, Ташкент, Узбекистан

Для создания преобразователей тепловой энергии в электричество большой интерес представляют структуры плёнок Si-Ge на подложке Si, в которых эффективность генерация эдс и токов зависит от концентрации структурных дефектов [1]. Нами исследовано влияние на процессы генерации носителей заряда ионной обработки поверхности плёночных p-n структур Si-Ge/Si, полученных газофазной эпитаксией. Бомбардировка образцов производилась ионами Не+ с энергией 4 кэВ при плотности тока порядка 0,1 мА*см-2 до доз значительной аморфизации поверхности. Оценки свидетельствуют, что ионная обработка приводит к увеличению тока короткого замыкания I_{κ_3} в области температур 400-700 К. Так, при нагреве до 700 К величина I_{κ_3} возрастает более чем вдвое для структур, не легированных Ті, и примерно в 4 – для легированных. Данное увеличение объясняется аналогично [1] образованием бомбардирующими ионами в структуре пленки дефектов, ответственных за процессы генерации эдс и носителей заряда при нагреве, и свидетельствует о возможности применения ионной обработки поверхности плёночных полупроводниковых материалов для создания тепловых преобразователей, работающих в области высоких температур.

ЛИТЕРАТУРА

[1] Ш.К.Кучканов, Х.Б.Ашуров. //Письма в ЖТФ, 2018, Т.44, №8, С.42-48.

СОСТАВ, СТРУКТУРА И ВНУТРЕННИЕ НАПРЯЖЕНИЯ В МНОГОСЛОЙНЫХ ПЛЕНКАХ нк-ZrN/a-ZrCu, ОБЛУЧЕННЫХ ИОНАМИ ГЕЛИЯ И КРИПТОНА

В.В. Углов^{1,*)}, С.В. Злоцкий¹⁾, Г. Абади²⁾, И.С. Веремей¹⁾, А.Е. Рыскұлов³⁾, Л.А. Козловский³⁾, М.В. Здоровец³⁾

¹⁾ Белорусский государственный университет, Минск, Беларусь
 ²⁾ Университет Пуатье, Пуатье, Франция
 ³⁾ Институт ядерной физики МЭ РК, Нур-Султан, Казахстан
 *) e-mail: uglov@bsu.by

Разработка новых радиационно-стойких материалов на основе многослойных кристаллических/аморфных пленок является перспективным, т.к. межслоевые границы могут влиять на устранение радиационных дефектов.

Многослойные пленки нк-ZrN/a-ZrCu были сформированы методом реактивного магнетронного напыления при 300° C. Толщина слоя ZrN составляла 5 нм, а слоя ZrCu менялась от 5 до 10 нм. Содержание меди (x) в слоях Zr_{1-x} Cu_x варьировалось в диапазоне от 0.45 до 0.74.

Облучение многослойных пленок проводилась ионами гелия (40 кэВ) и ионами криптона (280 кэВ) на ускорителе тяжелых ионов ДЦ-60 при флюенсах до 2×10^{17} и 5×10^{15} см $^{-2}$, соответственно.

Проведенные исследования исходных пленок показали, что они представляют собой чередующиеся кристаллические ZrN и аморфные ZrCu слои. Выявлена стабильность структуры и фазового состава многослойных пленок, облученных ионами гелия. Для пленок, облученных низкоэнергетическими ионами криптона, обнаружен эффект перемешивания приповерхностных слоев многослойного покрытия с нарушением структуры чередующихся слоев.

Обнаружено, что облучение высокоэнергетическими ионами гелия и криптона приводит к росту сжимающих напряжений в многослойных пленках нк-ZrN/a-ZrCu. В работе обсуждаются механизмы образования радиационных дефектов в многослойных плёнках нк-ZrN/a-ZrCu, а также влияние увеличения дозы облучения на уровень внутренних напряжений.

СТРУКТУРНО-ФАЗОВЫЕ ИЗМЕНЕНИЯ В КОНЦЕНТРИРОВАННЫХ ТВЕРДЫХ РАСТВОРАХ СИСТЕМЫ V-Nb-Ta-Ti, ОБЛУЧЕННЫХ ИОНАМИ ГЕЛИЯ

В.В. Углов^{1,*)}, А.Е. Рыскұлов²⁾, Д. Ке³⁾, М.М. Белов¹⁾, С.В. Злоцкий¹⁾, И.А. Иванов²⁾, А.Е. Курахмедов²⁾, Д.А. Мустафин²⁾, Ә.Д. Сапар²⁾, Е.В. Бихерт²⁾

Белорусский государственный университет, Минск, Беларусь
 Институт ядерной физики МЭ РК, Нур-Султан, Казахстан
 Пекинский технологический институт, Пекин, Китай

*) e-mail: uglov@bsu.by

Концентрированные твердые растворы на основе V-Ti-Nb-Ta были синтезированы с использованием металлов высокой чистоты (>99,9%) методом дуговой плавки с последующей гомогенизацией. Далее проводился отжиг на протяжении 24 ч и 72 ч при температуре 1150°C с промежуточной холодной прокаткой до 85% сокращения толщины.

Исследования исходных образцов показали формирование однофазных твердых растворов с ОЦК-решеткой с однородным и эквиатомным распределением элементов. Размер зерен в сплаве VNbTaTi составил 100-200 нм. Выявлено, что напряжения второго рода, с ростом числа элементов увеличиваются и являются сжимающими.

Исследования образцов, облученных низкоэнергетическими ионами гелия (40 кэВ) с флюенсом 2×10^{15} см⁻², методами рентгеноструктурно анализа и растровой электронной микроскопии, показали, что параметр решетки увеличился, ОКР уменьшилось, однородность распределения элементов и фазовый состав системы Nb-Ta-Ti-V не изменились. Обнаружено, что в отличие от чистого V, облучение ионами гелия приводит к увеличению внутренних напряжений. В работе обсуждаются механизмы образования и роста радиационных дефектов в системе Nb-Ta-Ti-V и влияния их на уровень внутренних напряжений.

ТОПОГРАФИЯ Со ПОКРЫТИЯ ПОЛУЧЕННОГО ИОННО-АССИСТИРОВАННЫМ ОСАЖДЕНИЕМ

С.М. Барайшук 1* , М. Вертель 2 , В.К Долгий 1

1) Белорусский государственный аграрный технический университет, Минск, Беларусь

²⁾ Институт физики, университета М. Кюри-Склодовской, Люблин, Польша

*) e-mail: bear_s@rambler.ru

Осаждение светопрозрачных коррозионно стойких защитных покрытий является перспективным направлением модификации поверхности функциональных материалов. В нашей работе образцы кремния модифицировались нанесением Со при ускоряющем потенциале 7 кВ поток ассистирующих ионов (2,7–10,8)·10¹⁶ Со⁺/см². Состав поверхности изучен ранее в [1]. Изучение топологии проводилось с применением атомно-силового микроскопа NT 206 в сочетании со сканирующей электронной микроскопией с использованием EDX Oxford Instruments AZtecEnergy-Advanced с кремний-дрейфовым детектором.

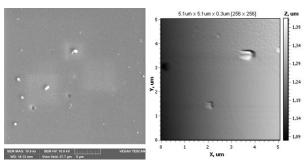


Рис. 1. Топография поверхности кремния, модифицированного нанесением Со полученная СЭМ и АСМ соответственно.

Характеристики получаемой поверхности позволяют рассматривать возможность применения таких покрытий в качестве лицевых контактов сенсорных элементов.

ЛИТЕРАТУРА

1. Бобрович О.Г., Ташлыков И.С., и др.// Физика и химия обработки материалов, 2006, №1, с. 54–58.

PROTECTIVE COATINGS FOR ACCIDENT TOLERANT FUEL CLADDING: IMPACT OF INNER-SIDE CHROMIUM COATING ON REACTOR NEUTRONIC PERFORMANCE

Rofida Hamad Khlifa*, Nicolay N. Nikitenkov

Tomsk Polytechnic University, Tomsk, Russia

*rofida@tpu.ru

Using Protective coatings on Zirconium based claddings is one of the proposed near-term solutions to enhance tolerability of LWRs fuel in accidental scenarios. an inner-side coating will further enhance cladding protection from oxidation and secondary hydrogenation in LOCA conditions, following clad burst and leakage of coolant into their inside part. Coatings are expected to work within the same designs of current LWRs, therefore; it's crucial to study the effects of their introduction into those systems. This study investigates reactor's Neutronic behavior upon applying a thin film of chromium on the inner side of nuclear fuel cladding. Neutronic calculations performed using Monte Carlo probabilistic code MCNPX. The model used is based on VVER-1200 single fresh fuel assembly with an enrichment of 4.5%. The code firstly validated by applying coatings with different thicknesses on the external side of cladding, and the recorded reactivity deviation compared with similar published results. The model is then modified and an interior chromium coating applied with four different thicknesses 10, 15, 20, 30 and 40 µ, the deviation of the multiplication factor from reference case is calculated for each thickness, in addition to radial flux and temperature coefficients. Results also compared to outer side chromium coating. A small deviation in reactivity was observed; increasing with the coating thickness, but still remains smaller than the case of applying same thickness on the exterior side of cladding, this finding emphasis the impact of decreasing moderation due introduction of coating rather than neutrons absorption by it. Results also showed that the presence of the inner chromium coating has negligible impact on the overall flux. Temperature reactivity coefficients showed some fluctuations between less negative for coating thicknesses 10µ, 30 µ and more negative for 15, 20 and 40 µ but generally small and the overall still within the design values for VVER-1200 reactor at the beginning of the cycle (BOC).

СОСТАВ И СТРУКТУРА КОМПОЗИТА НА ОСНОВЕ КАРБИДА КРЕМНИЯ, ОБЛУЧЕННОГО ИОНАМИ КРИПТОНА

В.М. Холод^{1,*)}, В.В. Углов^{1,*)}, П.С. Гринчук²⁾, М.В. Кияшко²⁾, С.В. Злоцкий¹⁾, И.А. Иванов^{3,4)}, А.Л. Козловский⁴⁾, М.В. Здоровец^{3,4)},

¹⁾Белорусский государственный университет, Минск, Беларусь ²⁾Институт тепло- и массообмена им. А.В. Лыкова Национальной академии наук Беларуси, Минск, Беларусь

³⁾Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан ⁴Институт ядерной физики, Нур-Султан, Казахстан

*)e-mail: uglov@bsu.bv, valentinakholad@mail.ru

Образцы SiC были получены в ИТМО НАН РБ путём связывания двух фракций порошков SiC M5 и M50 (размер зёрен 5 мкм и 50 мкм соответственно) с помощью термопластичного связующего на основе парафина P-2.

Облучение образцов проводилось низкоэнергетическими ионами криптона (280 кэВ) на ускорителе тяжелых ионов ДЦ-60 (Институт ядерной физики, Нур-Султан, Казахстан). Облучения ионами криптона проводились при флюенсах $1\cdot 10^{13}$, $1\cdot 10^{14}$, $5\cdot 10^{15}$ см⁻². Исследование структурно-фазового состояния исходных и облучённых образцов карбида кремния проводилось методами рентгеноструктурного анализа (РСА), рамановской спектроскопии и сканирующей электронной микроскопией.

По данным РСА можно сделать вывод, что исходные образцы представляют собой композит: SiC-6H, Si, SiC-15R. Основной фазой является SiC-6H (около 80%), содержание фазы SiC-15R – около 20%, Si – менее 5%.

На рамановском спектре наблюдаются четыре пика первого порядка колебаний связей Si-C ($700 \div 1000 \text{ см}^{-1}$), при дозе $5 \cdot 10^{15} \text{ см}^{-2}$ отсутствуют пики первого порядка колебаний, что связано с аморфизации поверхностного слоя SiC, которая также подтверждается электрономикроскопическими исследованиями.

ИССЛЕДОВАНИЕ ЭЛЕКТРОННОЙ СТРУКТУРЫ ПОВЕРХНОСТИ GaAs ПРИ НИЗКОЭНЕРГЕТИЧЕСКОЙ ИОННОЙ БОМБАРДИРОВКЕ

Д.А. Ташмухамедова, М.Б. Юсупжанова, З.Турсунметова, М.А. Миржалилова, Х. Абдиев, Ж. Шерматов

Ташкентский государственный технический университет имени Ислама Каримова. 100095 Ташкент. Узбекистан

e-mail: ftmet@mail.ru

Наноразмерные структуры, полученные на основе полупроводниковых пленок, имеют перспективы при разработке новых многослойных МДП, ПДП структур, лазеров, оптоэлектронных приборов, барьерных слоев, электроннои магнитозапоминающих устройств /1/. Нами ранее методами ионной имплантации в сочетании с отжигом в поверхностной области Si и GaAs получены нанокристаллы (НК) и нанопленки (НП) типа CoSi₂, BaSi₂, Ga_{0.5}Na_{0.5}As, Ga_{0.5}Al_{0.5}As и изучены их состав, электронная и кристаллическая структура /2, 3/. Настоящая работа посвящена изучению влияния бомбардировки ионами Ar⁺ при различных углах падения на электронную структуру поверхности GaAs. Бомбардировка проводилась ионами Ar^+ с энергией $E_0 = 1$ keV с вариацией дозы облучения D от 10^{14} до 10^{17} cm⁻² при углах падения ϕ от 0 до 80° относительно нормали к поверхности. Независимо от дозы ионов Ar+ ширина запрещенной зоны поверхностного слоя GaAs уменьшается. Уменьшение E_g зависит от угла падения ϕ ионов Ar^+ . В частности, при $D = 5 \cdot 10^{15}$ см⁻² в случае бомбардировки с $\varphi = 0$ значение E_g составляет ~ 0.75 эВ, а в случае $\varphi = 72 - E_g$ = 0.98 3B.

ЛИТЕРАТУРА

- 1. Масалов С.А., Коротченков А.В., Евтихиев В.П., Сорокин С.В. // Письма в ЖТФ. 2015. Т. 41. В. 1. С.102.
- 2. Эргашов Ё.С., Ташмухамедова Д.А., Умирзаков Б.Е. //Поверхность. Рент.,синхрот. и нейт. исс. 2017. № 4. С.104.
- 3. Болтаев X.X., Содикжанов Ж.Ш., Ташмухамедова Д.А., Умирзаков Б.Е. // ЖТФ. 2017. Т. 87 (12). С. 1884.

ИССЛЕДОВАНИЕ СОСТАВА И ЭЛЕКТРОННОЙ СТРУКТУРЫ ИОННО-ИМПЛАНТИРОВАННЫХ СИЛИКАТНЫХ СТЕКОЛ

Д.А. Ташмухамедова, А.Н. Ураков, С.Т. Гулямова, С.Т.Абраева, З.М. Собиров, Б.Е. Умирзаков

Ташкентский государственный технический университет имени Ислама Каримова, 100095 Ташкент, Узбекистан

e-mail: ftmet@mail.ru

Интерес к исследованию легированных силикатных стекол прежде всего, обусловлен применением их в создании пленочных резисторов и чипов в датчиках различных физических и химических воздействий /1/. В работе с использованием методов оже-электронной спектроскопии, ультрафиолетовой фотоэлектронной спектроскопии и спектроскопией поглощения света /2, 3/ исследовано влияние имплантации ионов Ва⁺ в силикатное стекло и последующего отжига на состав, плотности электронных состояний и параметров энергетических зон. Показано, что после ионной имплантации в ионнолегированном слое образуются нестехиометрические оксиды Si, Pb и Ва, а также несвязанные атомы этих же элементов. Вследствие этого происходит существенное изменение электронной структуры силикатного стекла, в частности, ширина запрещенной зоны уменьшается на ~ 2 эВ. После отжига при Т = 1000 К в ионно-легированном слое исчезают несвязанные атомы Si, Pb, Ва и формируются стехиометрические оксиды типа SiO₂, PbO и ВаО.

ЛИТЕРАТУРА

- 1. Wen M., Guan X., Li H., Ou J. // Physical A. 2020. V. 301. P. 111779.
- 2. Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рент., синхр. и нейт. исс. 2015. № 4. С. 38.
- 3. Tashmukhamedova D.A., Yusupjanova M.B., Tashatov A.K., Umirzakov B.E. // Journal of Surface Investigation: X ray, Synchrotron and Neutron Techniques, 2018, volume 12, P. 902.

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ ПЛЕНОК ОКСИДОВ SiO $_2$ НА ПОВЕРХНОСТИ Si ПРИ НИЗКОЭНЕРГЕТИЧЕСКОЙ ИМПЛАНТАЦИИ ИОНОВ О $_2$ ⁺ И ПОСЛЕДУЮЩЕГО ОТЖИГА

Б.Е. Умирзаков¹, Г.Х. Аллаярова^{2,*}, Н.Ж. Одилова², Д.Ж.Нурматова²

¹Ташкентский Государственный технический университет, г. Ташкент, Узбекистан

²КарГУ, г.Карши, Узбекистан

*)e-mail: allayarova5030@mail.ru

В данном работе исследовано получение наноразмерных фаз и слоев Si на различных глубинах пленоки SiO_2 бомбардируемой ионами Ar^+ и определению их состава, размеров, структуры и ширины запрещенных зон. Для создания наноструктур Si в случае пленок SiO_2 и ионы Ar^+ направлялись перпендикулярно к поверхности, а в случае монокристаллов SiO_2 под углом $3-4^0$ относительно нормали, чтобы избежать каналирования ионов.

На рис. приведена зависимость интенсивности I оже-пика O (E ≈ 506 эB) от дозы облучения для Si, имплантированного ионами O_2^+ с $E_0\approx 1$ кэB. Кривая 1 относится к изменению I на поверхности, а кривая 2 - на глубине $\sim 25 \mbox{\normalfont\AA}$, которая соответствует максимуму распределения атомов кислорода влизи поверхности. Из рис.1 видно, что концентрация кислорода в приповерхностном слое значительно больше, чем на поверхности. При дозе ионного облучения $D\!\!\geq\!5\!\cdot\!10^{16}$ см 2 оба зависимости выходят на плато.

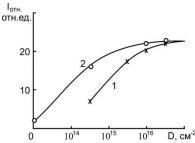


Рис.1. Зависимость интенсивности оже — пика О от дозы облучения для Si, имплантированного ионами O_2^+ с E_0 =1 кэB: 1- на поверхности; 2- на глубины \sim 25Å

СПОСОБ УВЕЛИЧЕНИЯ БАКТЕРИЦИДНЫХ СВОЙСТВ НАНОРАЗМЕРНЫХ АЛМАЗОПОДОБНЫХ ПЛЕНОК

Ф.Г. Нешов, И.Н. Бажукова, Л.В. Викторов, Д.В. Райков, О.Е. Прокопьева

> Уральский Федеральный Университет, Екатеринбург, Россия

> > e-mail: mail@example.ru

Алмазоподобные пленки, легированные ионами серебра, широко используются для защиты различных имплантов [1]. В последние годы широко исследовались бактерицидные способности медных поверхностей. В результате и было доказано, что медь также обладает выраженной бактерицидностью [2].

В данной работе проведено исследование влияния легирования алмазоподобных пленок ионами меди на их антимикробные свойства.

Нанесение углеродных пленок толщиной 50-1000 нм, осуществлялось методом импульсного вакуумно-дугового разряда с графитовым катодом, легированным медью.

Бактерицидность пленок определялась с помощью 0,5% водного раствора биосенсора «Эколюм». Измерение световыхода при воздействии плёнок на биосенсор проводилось на установке регистрации слабых световых потоков на основе ФЭУ-85. Анализ кривых спада световыхода алмазоподобной плёнки и плёнок, легированных медью, показал, что бактерицидность легированных пленок увеличивается.

ЛИТЕРАТУРА

- 1. Тапальский Д.В., Николаев Н.С., Овсянкин А.В., и др. Покрытия на основе двумерно упорядоченного линейно-цепочечного углерода для защиты титановых имплантатов от микробной колонизации // Травматология и ортопедия России. 2019. Т. 25. №2. С. 111-120.
- 2. Грасс Г, Рензинг К, Солиоз М: Металлическая медь как противомикробная поверхность. Appl Environ Microbiol 2011, 77, 1541 1547.

УПРАВЛЕНИЕ СМАЧИВАЕМОСТЬЮ ПОВЕРХНОСТИ ОСАЖДЕНИЕМ ПОКРЫТИЙ НА ОСНОВЕ Ті И Со

О.М. Михалкович 1* , О.Г. Бобрович 2 , С.М. Барайшук 3)

- ²⁾ Белорусский государственный технологический университет, Минск, Беларусь
- 3) Белорусский государственный аграрный технический университет, Минск, Беларусь

*) e-mail: phyzbober@tut.by

Нанесение металлического (Ti, Co) покрытия на стекло в условиях ассистирования ускоренными ионами Ti⁺, Co⁺ проводили при ускоряющем напряжении U=7 кВ и потоках ионов $(2,5-9,9)\cdot10^{16}$ Ti⁺/см², $(2,7-10,8)\cdot10^{16}$ Co⁺/см², используя методику примененную ранее для Мо [1]. Отношение ионизированных частиц к нейтральным в составляло 0,02 при осаждении Тi и 0,06 при осаждении Co. В рабочей камере поддерживался вакуум $\sim10^{-2}$ Па.

Равновесный краевой угол смачивания модифицированных образцов стекла дистиллированной водой приведены в таблице, РКУС исходного стекла 18.9°.

Ион	Время модифи-	U,	Поток ионов Ф,	РКУС
	цирования, мин	кВ	10 ¹⁶ ион/см ²	
Ti ⁺	30	7	2,5	48,7
	60	7	5,0	57,9
	90	7	7,4	81,4
	120	7	9,9	94,5
Co+	30	7	2,7	61,6
	60	7	5,4	76,4
	90	7	8,1	91,7
	120	7	10,8	98,2

Полученные результаты показывают возможность управления смачиваемостью поверхности стекла осаждением покрытий на основе титана и кобальта.

ЛИТЕРАТУРА

1. Бобрович О.Г. и др. // Труды БГТУ, 2018, Серия 3, № 2, с. 62-66.

¹⁾ Белорусский государственный педагогический университет им. М. Танка, Минск, Беларусь

АНАЛИЗ ДИФРАКТОГРАММЫ МОНОКРИСТАЛЛА Al2O3

Ш.Т. Хожиев ¹, И.О. Косимов ¹, Ф.К. Хаплоков ²

¹Институт Биоорганической Химии им.акад. О.С. Садыкова АН РУз, ²Институт ядерной физики АН РУз. г.Ташкент, Узбекистан, ул.М. Улугбека 83.

e-mail: Khojiev69@bk.ru

В настоящей работе порошковый рентгенофазовый метод анализа использовали для изучения структуры, состава, свойств оксида алюминия Al₂O₃. Экспериментально обнаружены различные пики в спектре рентгенофазового анализа (XRD) образцов оксида алюминия Al₂O₃. На основе данных (XRD), полученных для образцов с различными режимами получения порошка определены индексы Миллера и параметры решетки. Полученные экспериментальные данные хорошо согласуется с данными полученными другими методами. На рис.1 представлена спектральная зависимости Al₂O₃ полученная методом порошкового дифрактометра. Кроме того, при применение программного обеспечения Full Prof получены структуры для данного материала.

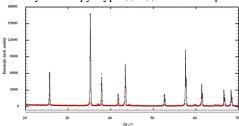


Рис.1. Дифрактограмма Al₂O₃

Таким образом данный метод позволяет определят состав и структуру Al₂O₃

ЛИТЕРАТУРА

1. Г.С.Жданов, А.С.Илюшин, С.В.Никитина //Дифракционный и резонансный структурный анализ. // Москва «Наука». 1980.

МОДИФИКАЦИЯ СВОЙСТВ ПОВЕРХНОСТНЫХ СЛОЕВ АЛЮМИНИЕВЫХ СПЛАВОВ ПОД ДЕЙСТВИЕМ МОЩНЫХ ИОННЫХ ПУЧКОВ

Т.В. Панова, В.С. Ковивчак, Т.В. Хрянина

Омский государственный университет им. Ф.М. Достоевского, Омск, Россия

e-mail: panovatv@omsu.ru

В последние годы большой научный и практический интерес вызывает интенсивная пластическая деформация металлов и сплавов при обработке высокоэнергетическими пучками заряженных частиц, в частности, мощным ионным пучком (МИП). Воздействие МИП приводит к генерации в объеме металлических мишеней волн механических напряжений и образованию различных радиационных и деформационных дефектов, что влияет на свойства поверхностных слоев. В качестве объектов исследования были выбраны алюминиевые сплавы Д16, АК-4-1 и В95Т. Облучение образцов проводили протонуглеродным пучком (30% H⁺ +70% C⁺, E ~ 200 кэB, $j \le 150$ A/cm², $\tau = 60$ нсек) при варьировании плотности ионного тока. С помощью метода рентгеноструктурного анализа обнаружено уменьшение параметров решетки α-фазы с увеличением плотности ионного тока, что свидетельствует о деформирующем влиянии формирующихся сжимающих остаточных напряжений при облучении МИП. Анализ размеров областей когерентного рассеяния при сравнении с чистым алюминием показал тенленцию к их уменьшению, так, например, в сплаве Д16 измельчение произошло в 1,5 раза, при этом плотность дислокаций увеличилась в 2 раза, а в сплаве В95Т плотность дислокаций возросла в 3 раза. Такая тенденция говорит о существенном влиянии легирующих элементов на дисперсность и плотность дислокаций при варьировании параметров облучения. Анализируется роль режимов облучения в формировании напряженнодеформированного состояния в исследуемых сплавах, обсуждаются возможные механизмы наблюдаемых структурно-фазовых изменений и их влияние на величину микротвердости.

ТОПОГРАФИЯ ПОВЕРХНОСТИ ХРОМА ПОСЛЕ ЕГО ОБРАБОТКИ ИМПУЛЬСНЫМ ПОТОКОМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

 $M.В.Жидков^{1}$, $A.Е.Лигачев^{2}$, $C.А.Сорокин^{3}$, $\Gamma.В.Потемкин^{4}$, $Ю.Р.Колобов^{5}$

1) НИУ БелГУ, Белгород, Россия
2) Институт общей физики РАН, Москва, Россия
3) ИСЭ СО РАН, Томск, Россия
4) Томский политехнический университет, Томск, Россия
5) ИПХФ РАН, Черноголовка, Россия

Исследовано влияние потока мягкого импульсного рентгеновского излучения на топографию поверхности хрома. Облучение проводили с использованием сильноточного генератора МИГ [1]. Образец располагался на расстоянии 10 см от источника рентгеновского излучения. Длительность импульса (или одной дозы) излучения равнялась 60 нс, энергия в рентгеновском импульсе составляла $(10-12)\pm 2$ кДж, что соответствует плотности энергии излучения на поверхности образца $\sim 10~\rm Дж/cm^2$.

Установлено, что в результате такого воздействия на поверхности хрома по границам зерен формируются полости глубиной не менее нескольких микрон, вытянутых вдоль границ зерна. Дефекты в виде кратеров, которые формируются на поверхности металлов после их обработки мощными импульсами пучками электронов, ионов и плазмы, не обнаружены.

ЛИТЕРАТУРА

1.Кабламбаев Б.А., Лучинский А.В., Петин В.К., Ратахин Н.А., Сорокин С.А., Федущак В.Ф., Чайковский С.А., Шляхтун С.В. Установка МИГ — универсальный рентгеновский источник // Вопросы атомной науки и техники, сер.: Физика радиационного воздействия на радиоэлектронную аппаратуру, 2001, вып.3-4, с.149-155.

ЭВОЛЮЦИЯ СПЕКТРОВ КАТОДОЛЮМИНЕСЦЕНЦИИ В ПРОЦЕССЕ ЭЛЕКТРИЗАЦИИ ДИЭЛЕКТРИКОВ

Е.Ю. Зыкова, А.Е. Иешкин, К.Е. Озерова, Н.Г. Орликовская, Э.И. Рау, А.А. Татаринцев *)

Физический факультет МГУ имени М.В. Ломоносова, Москва, Россия

*) e-mail: tatarintsev@physics.msu.ru

Изучение эффектов электризации диэлектриков имеет как научный интерес, так и большое практическое значение. Радиационную зарядку следует учитывать при электризации поверхности космических аппаратов, в эмиссионной электронике и аналитических методах исследования. По статистике основной причиной отказов космических аппаратов является электростатический пробой между различно заряженными участками поверхности космических аппаратов вследствие зарядки космическими частицами.

Полученные ранее экспериментальные результаты по изучению процесса зарядки диэлектрических образцов [1, 2] позволили выдвинуть предположение о решающей роли ловушек для электронов, как изначально существующих в кристалле, так и создаваемых в процессе электронного облучения за счет механизмов допорогового дефектообразования.

Цель настоящей работы — экспериментальное изучение процессов дефектообразования в диэлектрических материалах Al_2O_3 , SiO_2 , MgO, а также в GaN, при электронном облучении. Для этого были проведены исследования эволюции спектров катодолюминесценции образцов в процессе их облучения электронами с энергией 2-15~ кэВ.

ЛИТЕРАТУРА

- 1. Э.И. Рау, А.А. Татаринцев // ФТТ, 2021, т. 63, № 4, с. 483.
- 2. Э. И. Рау, А. А. Татаринцев, Е. Ю. Зыкова и др. // ФТТ, 2017, т. 59, № 8, с. 1504.

ПРОЦЕСС ОЧИСТКИ ПОВЕРХНОСТИ ОБРАЗЦА ИОНАМИ ПЛАЗМЫ ТЛЕЩЕГО РАЗРЯДА И НАНЕСЕНИЕ ПОКРЫТИЯ В ОДНОМ ТЕХНОЛОГИЧЕСКОМ ШИКЛЕ

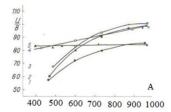
В.Н. Арустамов, Х.Б. Ашуров, И.Х. Худайкулов, Б.Р. Кахрамонов

Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан. arustamov@iplt.uz

Проведена отработка процесса очистки ионами плазмы тлеющего разряда и нанесения покрытия вакуумно-дуговым методом в одном технологическом цикле. Получены образцы из стали 3 и латуни, с нанесенным покрытием титана. Ток вакуумного дугового разряда ток -80A-100A, напряжение на разрядном промежутке 20 -24B, давление остаточной среды в камере составляло 10^{-1} - 10^{-3} Па. Время осаждения покрытий варьировалось пределах 10-15 мин. В таблице 1 представлены параметры тлеющего разряда в процессе реализации процесса очистки ионами плазмы тлеющего разряда поверхности образцов из стали 3 и латуни.

Таблица 1-Параметры процесса очистки ионами плазмы тлеющего разряда

Железо			Латунь			
Ток <i>,</i> (мА)	Напряжения (B)	t,(мин)	Ток, (мА)	Напряжения, (B)	t, (мин)	
3	300	60	3	300	3	
10	800	15	10	800	10	
15	1200	120	15	1200	15	
15	1300	120	15	1300	15	


Определено, что эффективность очистки поверхности изделия определяется интенсивностью ионной бомбардировки из плазмы тлеющего разряда и зависит от напряжения на электроразрядном промежутке. Покрытие титана, нанесённое на поверхность образцов, предварительно прошедшего очистку ионами плазмы тлеющего разряда сплошно, не имеет отслоений и следы рельефности поверхности отсутствуют.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ КАТОДА НА ТРАНСФОРМАЦИЮ ИОННО-ПЛАЗМЕННЫХ ПРОЦЕССОВ КАТОДНОЙ ОБЛАСТИ ВАКУУМНОЙ ДУГИ

В.Н. Арустамов, Х.Б.Ашуров, И.Х. Худайкулов, Б.Р. Кахрамонов

Институт ионно-плазменных и лазерных технологий, АН РУз.им.У.А.Арифова. Ул. Дурмон йули 33, 100125, Ташкент, Узбекистан; arustamov@iplt.uz

Существенное влияние на процессы генерации заряженных частиц в прикатодной области разряда. оказывает температура катода Температура катода определяет как наличие на поверхности различных загрязнений, так и поэтому исследование трансформации приэлектродних явлений при различной температуре катода имеет важное значение для понимания физических процессов, протекающих на поверхности электрода. Исследование дугового разряда на «горячем» катоде проводи-

лось в импульсном режиме. при температуре катода до 300К-2300К. Ток разряда регулировался изменением напряжения источника питания – Unв пределах 350 - 1200А. Длительность разряда составляла 1.5 мс. Вольтамперные характеристики дугового разряда, представлены на рис.1.

Рис.1. Вольт-амперные характеристики дугового разряда при температурах катода 300 - 2300 К. Кривая 1 - T = 300 К, кривая 2 - T = 1000 К, кривая 3 - T = 1500 К, кривая 4 - T = 1900 К, кривая 5 - T = 2300 К.

Приведенные зависимости, соответствующие температуре катода до~1800К имеют возрастающий характер. Разность напряжений разрядов в области токов~ 10^3 А достигает 13 -15 В. Более того, при предельных температурах катода ~2300К напряжение разряда практически не меняется с ростом тока разряда.

В процессе взаимодействия плазмы разряда с поверхностью катода формируется эрозионный след.

К ВОПРОСУ МЕХАНИЗМОВ F-Т ЭМИССИИ ЭЛЕКТРОНОВ В КАТОДНОМ ПЯТНЕ ВАКУУМНОЙ ДУГИ

В.Н. Арустамов, Х.Б. Ашуров, И.Х. Худайкулов, Б.Р. Кахрамонов

Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан

В катодных пятнах (КП) вакуумных дуг реализуется высокая плотность тока $(j=10^8 A~{\rm cm}^2)$, происходит интенсивное испарение (до G = 10^4 г см $^2{\rm c}^{-1}$), генерируется плотная (${\rm n_i}=10^{21}\div10^{22}~{\rm cm}^{-3}$) плазма, возникают сверхтепловые потоки плазмы. заполняющие межэлектродное пространство со скоростью = 10^6 см ${\rm c}^{-1}$, причем в составе плазмы присутствуют многозарядные ионы (до z = $5\div6$), относительная доля которых зависит от теплофизических свойств катода. Зависимости $lgj_e=f(1/{\rm T})$ для различных температур катода, отличающихся 2 -2,5 эВ работой выхода электрона.

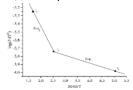


Рис 1 Зависимость $lgj_e = f(1/T)$ при разных температурах катода.

На графике показано изменениепри каких работах выхода материала катода при температурах катода 1000K, 2000K, 3000K. реализуется катодное пятно в условия авто термоэмиссии электронов. Как следует из графика наблюдается определенное нелинейное изменение плотности тока,в услових постоянства электроческого поля в катодном пятне $(10^7 \text{ B} / \text{см})$. Таким образом в услових автоэлектронной эмиссии в катодном пятне вакуумного дугового разряда с учетом термоэмисси электронов в "горячем" катоде (2273K), реализации разрядом возможно в металлах с работой выхода до 2 эВ и с T_2 до T_3 до 2,5 эВ [1].

ЛИТЕРАТУРА

1.Критерий механизмов эмиссии- F эмиссии электронов в катодном пятне вакуумной дуги.Х.Б. Ашуров, В.Н. Арустамов, Р.Б. Нагайбеков, Х.Х. Кадыров, И.Х Худайкулов, УФЖ, Узбекистан, Ташкент. сс $180-191.2012~\mathrm{r}$

АНАЛИЗ ПРОЦЕССА ОЧИСТКИ ПОВЕРХНОСТИ ИОННАМИ ПЛАЗМЫ ТЛЕЮЩЕГО РАЗРЯДА

В.Н. Арустамов, Х.Б. Ашуров, В.М. Ротштейн, И.Х. Худойкулов

Институт ионно-плазменных и лазерных технологий. АНРУз, Ташкент, Узбекистан; arustamov@iplt.uz

Вакуумные ионно-плазменные технологии применяются для обработки поверхности изделий, нанесения различных функциональных покрытий. Очистка поверхности осуществлялась ионами тлеющего разряда при давлении в камере 10-1-102 Па, плотности тока ионов до 10 мА/см2, и напряжении на электродной системе 600-1000В. Эффективность процесса очистки поверхности изделий анализировалось с помощью ИК фурье-спектрометра. Анализ ИКспектров поверхности изделия. показал наличие целого ряда различных загрязнений.



Рис. 1. ИК-спектры поверхности изделия; а)-до очистки, в)- после очистки тлеющим разрядом.

Анализ интенсивности соответствующих пиков приведённых выше ИК спектров, позволяет оценить эффективность каждого этапа очистки поверхности изделия. Однако степень очистки присутствующих видов загрязнений различна, так для загрязнений, соответствующих частотам поглощения в области 1300-1500см-1, увеличилась в два раза, а очистки загрязнений, соответствующих частотам поглощения в области 800-1000см-1, увеличилась в девятналиать.

ЛИТЕРАТУРА

1 V. N. Arustamov, K. B. Ashurov, Kh. Kh. Kadirov, and I. Kh. Khudaykulov. Effect of the Cathode Spots of a Vacuum Arc on the Properties of the Surface Layer of Structural Materials Journal of Surface Investigation. X_ray, Synchrotron and Neutron Techniques 2014, Vol. 8, No. 3, pp. 573–580.

К ВОПРОСУ ФОРМИРОВАНИЯ НАПРАВЛЕННОГО ПЕРЕМЕЩЕНИЯ КАТОДНЫХ ПЯТЕН ВАКУУМНОЙ ДУГИ.

В.Н. Арустамов, Х.Б. Ашуров, И.Х. Худайкулов, Б.Р. Кахрамонов

Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан.

e-mail: arustamov@iplt.uz

Экспериментальные исследования перемещения катодных пятен вакуумного дугового разряда при асимметричном расположении точки съема тока с катода под действием электрического и магнитного полей тока в катоде, новые микропятна преимущественно образовываются у передней кромки исходного пятна. Однако непосредственное исследование влияния градиента потенциала в катоде на этот процесс является чрезвычайно сложной задачей, так как катодные пятна обладает микроскопическими размерами, высокой не стационарностью, большими плотностями тока и температурой в несколько тысяч градусов.

Отношения диаметра КП d_n к удельному сопротивлению катода достигнутое экспериментах, (удельная проводимость) составляют 0.85 (ом* см)⁻¹, что на порядок больше, чем в реальных условиях.

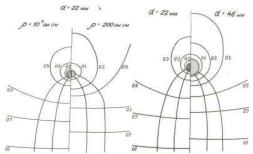


Рис. 1 Характерное распределение линий тока и эквипотенциальных линий в электролитической ванне при различных значениях диаметра опорного электрода и проводимости электролитической ванны

Экспериментальных исследований показала, что причиной направленного перемещения катодных пятен в направлении тока съема является превышение электрического поля (следовательно, и плотности тока) на передней кромке пятна по сравнению с тыльной.

СТРУКТУРНЫЕ, ОПТИЧЕСКИЕ И ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГЕРМАНИЯ, ГИПЕРДОПИРОВАННОГО ПРИМЕСЬЮ СУРЬМЫ

Р.И. Баталов 1* , Г.А. Новиков 1 , Р.М. Баязитов 1 , И.А. Файзрахманов 1 , К.Н. Галкин 2

¹⁾КФТИ ФИЦ КазНЦ РАН, Казань, Россия
 ²⁾ИАПУ ДВО РАН, Владивосток, Россия
 *) e-mail: batalov@kfti.knc.ru

В данной работе исследовано формирование тонких (до 0.3 мкм) гипердопированных примесью сурьмы (Sb) слоёв германия (Ge) на подложке монокристалла р-Ge(111). Образцы были получены методом ионно-лучевого распыления при низкоэнергетичном ($E \sim 1$ кэВ) и сильноточном ($i \sim 150$ мкА/см²) облучении ионами ксенона (Xe+) композитной мишени Sb/Ge. Полученные слои Ge:Sb ($N_{\rm Sb}$ до 5×10^{22} см⁻³) после осаждения имели аморфную структур и для их кристаллизации применялся импульсный (наносекундный) отжиг мощным ионным пучком (МИП) на ускорителе ТЕМП-4. МИП имел следующие параметры: состав пучка (C⁺-80%, H⁺-20%), энергия ионов $E \sim 300$ кэВ, длительность импульса $\tau \sim 100$ нс, плотность энергии $W = 1.0 \cdot 1.5$ Дж/см². Обработка МИП протекала в жидкофазном режиме через процессы плавления и кристаллизации. Для оценки степени кристаллизации применялся метод Рамановской спектроскопии. Распределение ионов Sb по глубине контролировалось методом вторичной ионной масс-спектрометрии (ВИМС). Полученные слои Ge:Sb исследовались на пропускание (T) и отражение (R) в ИК-области (λ = 1-10 мкм) для определения их поглощательной способности (А, а) и оценки концентрации носителей ($N_{\rm e}$). Также исследовалась их фотолюминесценция в области 1.5-2.0 мкм при 300 К. С использованием химического травления были получены меза-структуры и с помощью ВАХ оценивалось их диодное поведение. Исследован фотоотклик диодных структур n-Ge:Sb/p-Ge в области 0.5-2.5 мкм при 300 К, который был сравнен с фотооткликом типового Geфотодиода ФД-2. Результаты измерений показали сдвиг края фоточувствительности ло 2 мкм.

ИССЛЕДОВАНИЕ ЗОННОЙ СТРУКТУРЫ ПОВЕРХНОСТИ Z_пО МЕТОДОМ ЭЛЕКТРОННОЙ И ОПТИЧЕСКОЙ СПЕКТРОСКОПИИ

У.Б.Шаропов

НИИ Физики Полупроводников и Микроэлектроники НУУз Физико-технический институт АН РУз, Ташкент, Узбекистан

Знание электронной зонной структуры твердых тел необходимо для понимания их электрофизических и физико-химических свойств. В этой работе исследовано зонная структура и поверхностные состояния поли и монокристаллического полупроводника ZnO при облучении низкоэнергетическими первичными электронами методом СПТ [1] и произведен контроль другими методиками по исследованию поверхности.

Анализ спектров ПТ двух кристаллов показывает, что, в поликристаллическом образце интенсивность пиков очень слабое, за счет рассеяния электронов в поликристаллической решетке.

Наблюдаемые в эксперименте кинетические характеристики зарядки кристалла ZnO, связаны с генерацией радиационно-стимулированных дефектов и вакансиями кислорода на поверхности, являющихся ловушками для электронов.

Определено зонная структура поверхности кристаллов ZnO методами спектроскопии полного тока, показано существование дорадиационных дефектов – вакансий кислорода.

ЛИТЕРАТУРА

[1] U.B. Sharopov, // Thin Solid Films, 2021, V.735, 138902 https://doi.org/10.1016/j.tsf.2021.138902

АНАЛИЗ СТРУКТУРЫ КАРБИДА КРЕМНИЯ

Ш.Т. Хожиев 1,2 , И.О. Косимов 1,2 , Б.Б. Гаибназаров 2 , И.Х. Худайкулов 3

¹⁾ТашГТУ, г.Ташкент, ул.Университетская 2.
 ²⁾Институт биоорганической химии им.акад. О.С. Содыкова АН РУз,
 ³⁾Институт Ионно-плазменных и лазерных технологий им. У.А. Арифова, АН РУз. Khojiev69@bk.ru

Фазовый состав, структурные свойства и размеры наночастиц карбида кремний были исследованы методом порошковой дифрактрометрии, рамановской спектроскопии. Результаты показывают, что использование метана в качестве восстановителя увеличивает эффективность синтеза наночастиц карбида кремния SiC в несколько раз. На рис. 1 представлен спектр комбинационного рассеяния образца карбида кремния, синтезированного на углеродной подложке, при напуске метанового газа, полученный с использованием порошкового дифрактометра и приведены соответствующие индексы Миллера, а также межплоскостные расстояния dhkl.

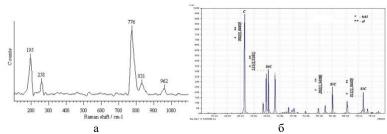


Рис.1. анализ карбида кремния: а). спектр комбинационного рассеяния образа SiC, синтезированного на углеродной подложке при напуске метанового газа, б). Дифрактограмма SiC.

Таким образом, пределено уменьшение межплоскостного расстояния с увеличением индексов Миллера. Применено индицирование для выявления примесей в образце, путем выделения рефлексов, которые не относится к основному веществу. Проведен элементный анализ в весовых процентах для SiC, Si– 15.79%, C – 14.16%.

ИЗУЧЕНИЕ ВЛИЯНИЯ ИМПЛАНТАЦИИ ИОНОВ АКТИВНЫХ МЕТАЛЛОВ НА КРИСТАЛЛИЧЕСКУЮ И ЭЛЕКТРОННУЮ СТРУКТУРУ НИТРИДА ТИТАНА

3.А. Исаханов¹, Б.Е. Умирзаков², Р.М. Ёркулов¹, Р. Курбанов¹

¹Институт ионно-плазменных и лазерных технологий 100125 Ташкент, Узбекистан, za.isakhanov@gmail.com

²Ташкентский государственный технический университет 100095 Ташкент, Узбекистан

Известно, что нитрид титана широко применяется для создания диффузионных барьеров и буферных слоев в микроэлектронике. Однако электронные свойства этих материалов до сих пор является малоизученными.

Отметим, что энергетические положения основных оже-пиков Ti и N, имеют очень близкие значение. Поэтому для получения более достоверных информации об электронной структуре пленок нитрида титана с разным содержанием азота необходимо одновременное использование комплекс методов: ФЭС, ЭОС и ВИМС. Имплантация ионов Na⁺ при малых дозах (Д \leq 5· 10^{15} cm⁻²) приводило к частичному разложению TiN на составляющие. При этом нами не обнаружены образование трехкомпонентных соединений типа Ti-Na-N, образовался в основном соединения типа Na_xN_y. При больших дозах наблюдался десорбция азота и обогащение этих слоев атомами Ti и Na, но не наблюдался образование соединений типа Ti+Na.

Изучались электронная структура поверхности нитрида титана, полученного нанесением на подложке из стали. Образцы очищались прогревом при $T \approx 400^{0} \text{C}$ при вакууме не хуже 10^{-6} Па. На рисунке приведены фотоэлектронные спектры, полученные для Ті и ТіN. Видно, что вид кривых энергетического распределения, форма и положения пиков Ті и ТіN существенно отличаются друг от друга. Фотоэлектронная работа выхода нитрида титана на 0,2-0,3 эВ больше, чем для титана.

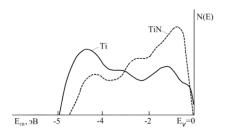


Рис.1. Спектры фотоэлектронов Ті и ТіN, полученные при hv=10,2 эВ.

ПОЛУЧЕНИЕ ПЛЕНОК ВЫСШЕГО СИЛИЦИДА МАРГАНЦА С ВЫСОКИМИ ТЕРМОЭЛЕКТРИЧЕСКИМИ СВОЙСТВАМИ

И.Р. Бекпулатов^{1,*}, Т.С. Камилов¹, Б.Д. Игамов², М.С. Лукасов³, И.Х. Турапов¹, А.И. Камардин²

¹ Ташкентский государственный технический университет, Университетская 2, 100095, Ташкент, Узбекистан, bekpulatov85@rambler.ru
² НТЦ с конструкторским бюро и опытным производством АН РУз, ул. Лурмон Йули, 33, Ташкент

³ Институт кристаллографии им. А.В. Шубникова РАН, Ленинский просп., 59, 119333, Москва, Россия

С использованием методов магнетронные распыление, состав и структура исследовались сканирующим электронным микроскопом. Ширина полосы пленки Mn4Si7/SiO2 измерялась на высокоточном спектрометре по закону отражения света. После отжига пленки силицида Мп₄Si₇ при 620 К в течение 1 часа при давлении 10-3 Па с помощью специального устройства, пленку охлаждали в вакууме до достижения комнатной температуры. При комнатной температуре удельной сопротивления составляет 7.86·10-6 Ом см, а при нагреве до температуры 700 К его удельное сопротивление уменьшается до 3.9·10-6 Ом см. Удельная электропроводность этой пленки составляет 0.12·106 Ом-1-см-1 при комнатной температуре. При нагреве до 700 К видно, что ее удельная электропроводность увеличилась до 0.27·10⁶ Ом⁻¹·см⁻¹. Показано, что наибольшим коэффициентом преобразования обладают пленки Mn₄Si₇, выращенные на подложке из SiO₂/Si, что объясняется низкой удельной теплопроводностью SiO₂/Si к = 149 Вт/м·К. Пленки Мп₄Si₇ на SiO₂/Si обладают высоким быстродействием, имеют высокую чувствительность и могут быть использованы в приемниках теплового излучения волн в видимой и ИК лиапазонах.

СОСТАВ И СТРУКТУРА ПОВЕРХНОСТИ КРЕМНИЯ, ПОДВЕРГНУТОЙ РАЗЛИЧНЫМ ВОЗДЕЙСТВИЯМ

Б.Е. Умирзаков¹⁾, З.А. Турсунметова²⁾, И.Р. Бекпулатов^{1),*}

- 1) Ташкентский государственный технический университет, 100095 Ташкент, Узбекистан
- ²⁾ НИИ Физика полупроводников и микроэлектроники, 100057 Ташкент, Узбекистан

e-mail: bekpulatov85@rambler.ru

С использованием методов оже – электронной спектроскопии (ОЭС), растровой электронной микроскопии (РЭМ), дифракции быстрых и медленных электронов (ДБЭ и ДМЭ) изучены влияние выдержки в высоком вакууме на состав и структуру поверхности очищенных различными способами монокристаллов Si. Очистка поверхности осуществлялась при вакууме $P \approx 10^{-7}$ Па тремя способами: термическим прогревом и ионно-плазменной обработкой не подвергнутого обработке Si и термическим прогревом после предварительной имплантации ионов Ba⁺. Показано, что независимо от способа очистки выдержка Si (111) в вакууме в пределах $10^{-5} - 10^{-7}$ Па приводит к появлению на его поверхности атомов кислорода и углерода, концентрации которых зависят от давления остаточного газа в приборе и времени выдержки. При $P \le 10^{-6}~{\rm \Pia}$ общая концентрация О и С не превышает 0.5 – 0.7 ат.% и легко удаляется кратковременным прогревом при T = 1000 К. Выдержка очищенного Si (111) в вакууме ≤ 10-6 Па в течении 70 - 100 с приводит к загрязнению поверхности атомами О до концентрации ~ 0.5 ат. %, а в вакууме 10^{-5} Па до 0.8 ат. %. При этом концентрация атомов С на поверхности не превышает 0.2 ат.%. После кратковременного прогрева этих образцов при $P \approx 10^{-7}$ Па до $T \approx 1200$ K происходит полное испарение атомов О и С с поверхности. Исходя из этих данных можно сделать вывод, что загрязнение поверхности, в основном, происходит за счет адсорбции атомов (молекул) кислорода и углерода из остаточного газа в приборе.

МАСС-СПЕКТРОМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ДЕСОРБЦИИ И ИОНИЗАЦИИ ФУЛЛЕРЕНА С₆₀ В ПОЛОЖИТЕЛЬНОМ РЕЖИМЕ

Ш.Я. Аматов 1 , М.Ш. Ахмедов 2 , Д.Т. Усманов 2*

¹⁾Ургенчский государственный университет, Ургенч, Узбекистан ²⁾Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан ^{*)} e-mail: usmanov@iplt.uz

*) e-mail: <u>usmanov@iplt.uz</u>

Области применения фуллеренов настолько широки что исследования фуллерена все еще продолжаются несмотря на то что первому сообщению о синтезе C_{60} исполнилось более 30 лет. В работе приведены результаты массспектрометрических исследований фуллерена с методом мгновенной десорбцией при атмосферном воздухе. Эксперименты проводились во время пролетного масс-спектрометра с использованием диэлектрического барьерного разрядного ионного источника. Мгновенная десорбция образца осуществлена с проволокой из нержавеющей стали в форме шпильки диаметром 0,4 мм. Нить перемещалась вниз и вверх по вертикальной оси с помощью системы с моторным приводом.

Масс-спектры образца порошка из нескольких мг C_{60} , нанесенного на металлическую пластину измерены от 150 до 800° С. Ионные токи, исходящие от C_{60} , начинались наблюдаться примерно при 500° С и усиливались с увеличением температурой нити. Известно, что молекула фуллерена (C_{60}) дает осколочные ионы с единичной потерей C_2 с образованием C_{58} , C_{56} и т.д. при электронной ионизации и ионной бомбардировке в вторичной ионной масс-спектрометрии [1]. Выявлено что, ион C_{60}^{+} появляется как основной ион, но фрагментарные ионы единичной потери C_2 не наблюдались. Это указывает на то, что C_{60} не подвергается какой-либо фрагментации в процессе десорбции при 800° С.

ЛИТЕРАТУРА

1. Saldi F., Marie Y., Gao Y., Simon C., Migeon H.N., Begin D., Mareche J.F. // Eur. Mass Spectrom. 1995, 1, 487–492.

ИССЛЕДОВАНИЕ ВЫХОДА НЕЙТРАЛЬНЫХ АТОМОВ ГАЛЛИЯ ПРИ БОМБАРДИРОВКЕ КЛАСТЕРНЫМИ ИОНАМИ Ві

А.С. Шерметова¹⁾, Ш.Дж.Ахунов²⁾, П.Г. Кахрамонова²⁾, Д.Т. Усманов^{2*)}

¹⁾Ургенчский государственный университет, Ургенч, Узбекистан ²⁾Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан ^{*)} e-mail: usmanov@iplt.uz

В настоящей работе обсуждаются результаты измерения нейтральных атомов галлия, конвертированных в положительные ионы на поверхности иридиевого эмиттера, при бомбардировке GaAs мишени кластерными ионами $\mathrm{Bi_{m}^{+}}$ (m=1-5) в диапазоне энергий 1-10 кэВ. Эксперименты проводились на двойном масс-спектрометре (МС\МС) [1]. Установка включает в свой состав ряд источников первичных ионов, содержащих источники отрицательных и положительных кластерных, молекулярных ионов и многозарядных ионов, а также магнитный сепаратор первичных ионов и магнитный анализатор вторичных ионов на базе масс-спектрометра МИ 1201. Для измерения выхода нейтральных атомов галлия изготовлен поверхностной ионизационной (ПвИ) конвертер нейтральных атомов в положительные ионы с применением иридиевого ПвИ эмиттера. Измерение выхода нейтральных атомов галлия проводилось по разработанной схеме с использованием методом ПвИ на поверхности иридиевого эмиттера, на котором происходила конверсия атомов галлия в ионы Ga⁺, которые детектировались во вторичном тракте масс-спектрометра. При выходе атомов галлия наблюдается более выраженный рост с увеличением энергии и количества атомов в бомбардирующих кластерных ионах. Как и в случае ионов наблюдается тенденция к уменьшению коэффициентов неаддитивности при увеличении энергии на атом в бомбардирующем кластерном ионе.

ЛИТЕРАТУРА

1. U.Kh. Rasulev, S.N. Morozov, U. Khasanov, D.T. Usmanov, Nucl. Instr. and Meth.in Phys. Res., B 258 (2007) 234-237.

ИССЛЕДОВАНИЕ ВЫХОДА ВТОРИЧНЫХ ИОНОВ ГАЛЛИЯ МЕТОДОМ ВТОРИЧНОЙ-ИОННОЙ МАСС-СПЕКТРОМЕТРИИ

Б.К. Абдуллаева 1 , Ш.Дж. Ахунов 2 , П.Г. Кахрамонова 2 , Д.Т. Усманов 2*

1) Ургенчский государственный университет, Ургенч, Узбекистан ²⁾Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан *) e-mail: usmanov@iplt.uz

Усовершенствование наноструктурных методов анализа поверхности твердого тела приобретает все большее значение по мере внедрения и развития нанотехнологий. В этом направлении одним из наиболее перспективных методов анализа является вторично-ионная масс-спектрометрия (ВИМС) [1].

В работе приводятся результаты измерения выхода вторичных ионов галлия, конвертированных в положительные ионы на поверхности иридиевого эмиттера, при бомбардировке GaAs мишени кластерными ионами Bim+ (m=1-5) в диапазоне энергий 1-10 кэВ. Эксперименты проводились на двойном массспектрометре (МС\МС) для изучения распыления, вторично-ионной и ионноэлектронной эмиссии различных материалов при бомбардировке ускоренными кластерными, молекулярными и многозарядными ионами. В масс-спектрах вторичной ионной эмиссии арсенида галлиевой мишени преобладали атомарные и кластерные ионы галлия. Это обстоятельство связано с малыми потенциалами ионизации галлиевых ионов и соответственно высокой эффективностью ионизации при распылении. Наличие большого количества кластерных ионов галлия указывает на присутствие на поверхности мишени объемных островков галлия. Наблюдается неаддитивный рост выхода вторичных ионов с увеличением числа атомов в бомбардирующих ионах.

ЛИТЕРАТУРА

1. P. van der Heide, Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices, Willey, 2014, 384 p.

ФОРМИРОВАНИЕ НАНОПЛЕНОК CoSi₂ НА ПОВЕРХНОСТИ Si ПРИ ТВЕРДОФАЗНОМ ОСАЖДЕНИИ

А.К. Ташатов¹⁾, Н.М. Мустафоева^{1*)}, Б.Е. Умирзаков²⁾

КарГУ, Карши, Узбекистан
 ТашГТУ, Ташкент, Узбекистан
 e-mail: atashatov@mail.ru

В данной работе мы попытались методом твердофазной эпитаксии получить наноразмерные пленки $CoSi_2/Si(111)$ с использованием метода предварительной бомбардировки Si ионами Ar^+ и изучить зависимость параметров энергетических зон от размеров нанофаз $CoSi_2$.

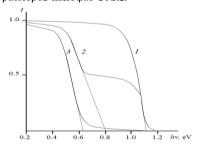


Рис. Зависимости I (hv) для пленки $CoSi_2/Si(111)$ с толщиной Θ (монослой): 1- Θ =0 (чистый Si); 2- Θ =6; 3- Θ =10

На рис.3 приведены зависимости I(hv) для Si покрытого пленкой $CoSi_2$ с толщиной 3 и 10 (кривая 2 и 3) монослой, измеренные после прогрева при $T\approx 900$ К в течение 40 мин. Из кривой 2 видно, что в случае нанофаз $CoSi_2$ с $\Theta\approx 3$ монослой степень покрытия поверхности составляет 0.5 - 0.6, $d\approx 25$ -30 нм а значение $E_g \sim 0.8$ эВ. В случае $\Theta_{CoSi2}\approx 10$ монослой, значение I практически уменьшается до нуля в интервале hv=0.45 - 0.65 эВ. Можно полагать, что при этом поверхность Si полностью покрывается сплошным, однородным эпитаксиальным слоем $CoSi_2$ с толщиной ~ 20 -25 монослой и E_g этого слоя составляет ~ 0.6 эВ, что характерно для толстых эпитаксиальных слоев $CoSi_2$.

Показано, что квантоворазмерные эффекты в случае нанофаз $CoSi_2$ проявляются при d ≤ 25 -30 нм.

ПОЛУЧЕНИЕ ДВУХСЛОЙНОЙ СИСТЕМЫ СИЛИЦИД – КРЕМНИЙ

М.Т. Нормурадов 1 , Д.А. Нормуродов 1 , Б.Е. Умирзаков 2 , И.Р. Бекпулатов 2,* , К.Т. Довранов 1 , Х.Т. Довранов 1

¹ Каршинский государственный университет, Карши, 180103 Узбекистан
 ² Ташкентский государственный технический университет, Университетская 2, 100095, Ташкент, Узбекистан, bekpulatov85@rambler.ru

В работе изучены закономерности формирования двухслойной нанопленочной системы типа $BaSi_2/Si/BaSi_2/Si$ (111) при по этапной имплантации ионов Ba^+ в Si(111). Исследования приводилась методами оже-электронной и рентгеновской спектроскопии. Значение ширины запрещенной зоны E_g и положения потолка валентной зоны E_V определялись методом ультрафиолетовой фотоэлектронной спектроскопии. Двухслойная нанопленочная система получена имплантацией ионов Ba^+ в Si(111) при дозе насыщения: сначала с высокой энергией 15-40 keV, а затем с низкой энергией 0.5-2 keV в сочетаний с отжигом при T=900 К.

С использованием методов ОЭС, УФЭС, РЭМ и рентгеноструктурного анализа исследованы состав, морфология поверхности и электронная структура нанопленочной системы $BaSi_2/Si/BaSi_2/Si(111)$, полученных методом имплантации ионов Ba^+ в Si в сочетании прогревом. Определены параметры энергетических зон и построена энергетическая зонная диаграмма системы Si / $BaSi_2/Si$. Определены глубина образования и толщина слоя $BaSi_2$ для различных энергии ионов Ba^+ в диапазоне от 0.5 кэВ до 40 кэВ.

ЛИТЕРАТУРА

- 1. Эргашов Ё.С., Умирзаков Б.Е. // Журнал технической физики, 2018, том 88, вып. 12. с. 1859-1862. Doi:10.21883/JTF.2018.12.46788.12-18
- 2. Rysbaev A.S., Khuzhaniyazov Zh.B., Normuradov M.T., Bekpulatov I.R., Rakhimov A.M. // Technical Physics, 2014, Vol. 59, № 11, pp. 1705–1710.
- 3. Ё.С. Эргашов. // Журнал технической физики, 2017, том 87, вып. 5. с.758-761

ИССЛЕДОВАНИЕ ИМПЛАНТАЦИИ ИОНОВ ДЕЙТЕРИЯ В ПОЛИКРИСТАЛЛИЧЕСКУЮ CVD-АЛМАЗНУЮ МИШЕНЬ

М.А. Кирсанов^{1*)}, С.Г. Климанов¹⁾, М.А. Негодаев²⁾, А.С. Русецкий²⁾, К.В. Шпаков²⁾, В.Н. Амосов³⁾, К.К. Артемьев³⁾, Д.А. Скопинцев³⁾

- 1) Национальный исследовательский ядерный университет "МИФИ", Москва, Россия
 - ²⁾ Физический институт им. П.Н. Лебедева РАН, Москва, Россия ³⁾ Частное учреждение «ИТЭР-Центр», Москва, Россия ^{*)} makirsanov@menhi.ru

Представлены результаты исследования насыщения текстурированной CVD-алмазной мишени ионами дейтерия. Измерения проведены на пучке ионов дейтерия ускорителя ГЕЛИС (ФИАН) при энергии дейтронов 15 – 35 кэВ и токе пучка 10 - 60 мкА. Регистрировались все вторичные продукты реакции синтеза ядер дейтерия, выходящие из мишени, т.е. нейтроны, протоны, ядра трития и ядра гелия-3. Детектирование нейтронов осуществлялось сцинтилляционными детекторами с органическими кристаллами и гелиевыми газовыми счетчиками. Для регистрации заряженных частиц использовался алмазный ионизационный детектор. Измерялся выход нейтронов и заряженных частиц в зависимости от времени облучения, времени выдержки и параметров пучка ионов. Выполнено моделирование пробегов ионов дейтерия в алмазе. По экспериментальным данным с учётом моделирования получена зависимость концентрации дейтерия в CVD-алмазе от тока пучка и времени облучения. Сделана оценка величины коэффициента диффузии дейтерия в CVD-алмазе.

ИССЛЕДОВАНИЕ ПРИМЕНЕНИЯ ИОННОЙ МОДИФИКАЦИИ ДЛЯ ПОВЫШЕНИЯ ФОТОКАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ZnWO₄ НАНОКОМПОЗИТОВ

А. Алина¹⁾, А.Л. Козловский^{2*)}

1) Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан 2) Институт ядерной физики МЭ РК, Алматы, Казахстан *) e-mail: kozlovskiy.a@inp.kz

В работе представлены результаты исследования применения облучения тяжелыми ионами Ar^{8+} , Kr^{15+} и Xe^{22+} для направленной модификации приповерхностного слоя $ZnWO_4$ нанокомпозитов с целью повышения фотокаталитической активности разложения органического красителя Родамина Б. В ходе исследования установлено, что облучения с флюенсами 10^{13} ион/см 2 приводит к изменению приповерхностного слоя и электронной плотности нанокомпозитов, обусловленного передачей энергии налетающих ионов и последующей трансформации кинетической энергии в тепловую. Передача энергии приводит к изменению электронной плотности и оптической плотности, что оказывает эффективное воздействие на фотокаталитическую активность, а также скорость разложения органического красителя. При этом установлено, что модифицированные нанокомпозиты позволяют ускорять процесс разложения красителя, а также повышать эффективность минерализании с 85 до 99 %.

ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ИОНОВ ИНЕРТНЫХ ГАЗОВ НИЗКОЙ ЭНЕРГИИ С МЕТИЛЬНЫМИ ГРУППАМИ НА ПОВЕРХНОСТИ LOW-К ДИЭЛЕКТРИКОВ

А.А. Сычева ^{1,*)}, А.А. Соловых ²⁾, Е.Н. Воронина^{1, 2)}

¹⁾ НИИ ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова, Москва, Россия
 ²⁾ Московский государственный университет имени М.В. Ломоносова, Физический факультет, Москва, Россия
 *) e-mail: sycheva.phys@gmail.com

В настоящее время для изоляции медных проводящих элементов современных интегральных схем активно применяются нанопористые low-k диэлектрики на основе аморфных SiOx матриц, поверхность которых покрыта СН₃-группами [1]. Одним из способов предотвращения диффузии атомов меди вглубь диэлектрика является нанесение ультратонких барьерных слоев из тугоплавких металлов на поверхность low-k пленки, с которой предварительно удалены СН₃-группы. В данной работе с использованием метода теории функционала плотности показано, что подобную обработку low-k диэлектриков можно осуществлять ионами инертных газов низкой (до 30 эВ) энергии. Исследованы особенности механизма удаления СН₃-групп нейтральными атомами и положительными ионами He, Ne, Ar, Xe [2]; на основании полученных расчетных данных сделана оценка пороговой энергии исследуемого процесса. Работа выполнена при поддержке гранта РФФИ № 18-29-27001.

ЛИТЕРАТУРА

- M.R. Baklanov, P.S. Ho, E. Zschech, Advanced Interconnects for ULSI technology (Wiley & Sons, 2012), p. 596.
- 2. А.А. Соловых, А.А. Сычева, Е.Н. Воронина, //, Письма в ЖТФ, 2022, 48, 7, 16.

ИССЛЕДОВАНИЕ ПОЛИМЕРНЫХ НАНОКОМПОЗИТОВ С РАЗЛИЧНЫМИ УГЛЕРОДНЫМИ НАПОЛНИТЕЛЯМИ ПОД ДЕЙСТВИЕМ ЭЛЕКТРОННОГО ПУЧКА

Е.А. Воробьева*, Д.О. Пешнина, А.А. Татаринцев, А.П. Евсеев, А.А. Шемухин

Московский государственный университет имени М.В. Ломоносова, Москва, Россия

*e-mail: vorkate89@mail.ru

Полимерные композиты с проводящими наполнителями потенциально могут использоваться во многих областях, в том числе при разработке устройств, требующих такие свойства, как эластичность, гидрофобность/гидрофильность, высокая электро- и теплопроводность. Зачастую в вакуумных электрических устройствах возникает нежелательный ток, что связано с высоким коэффициентом вторичной электронной эмиссии материала. Особый интерес представляют специальные покрытия с низким коэффициентом эмиссии, в частности, композитные материалы с проводящими наполнителями. В качестве таких наполнителей могут использоваться многостенные углеродные нанотрубки (МУНТ), которые обладают низким удельным сопротивлением, сопоставимым с проводящими материалами.

В данной работе исследована возможность использования полимерных композитных материалов на основе эпоксидных смол, армированных углеродными нанотрубками, в качестве покрытий с низким коэффициентом вторичной электронной эмиссии. Были синтезированы образцы полимеров на основе эпоксидных смол с различными наполнителями, в том числе с неориентированными, ориентированными углеродными нанотрубками и сажей. Образцы были исследованы под действием электронного пучка, проанализированы их зарядовые характеристики.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-79-00190).

ИССЛЕДОВАНИЕ ЭЛЕКТРОННЫХ И ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ГАЗОВЫХ ГИДРАТОВ МЕТОДОМ АВ-INITIO МОДЕЛИРОВАНИЯ

М.Б. Юнусов 1,* , Р.М. Хуснутдинов 1,2 , А.В. Мокшин 1,2

¹⁾Казанский (Приволжский) федеральный университет, Казань, Россия ²⁾Удмуртский федеральный исследовательский центр УрО РАН, Ижевск, Россия

*) e-mail: mukhammadbek@mail.ru

Газовые гидраты - это кристаллические соединения, состоящие из каркаса, образованного молекулами воды и молекул-гостей, включенных в полости каркаса. В настоящее время существует перспектива использования гидратов природного газа в качестве источника топлива, к тому же в газовой отрасли остро стоит проблема гидратообразования в газопроводах. В рамках данного исследования проведены крупномасштабные ab initio молекулярно динамические расчеты гидратов метана sI и sH. В рамках метода функционала электрон-электронного взаимолействия плотности расчета обобщенно-градиентное приближение GGA с обменноиспользовалось поправкой PBE. Электрон-ионное взаимодействие корреляционной осуществлялось с PAW-потенциала.

В диапазоне температур Т = [180; 260] К для гидратов метана пустых молекулярных каркасов sI и sH, рассчитана средняя теплоемкость при постоянном объеме. Полученные значения теплоемкости имеют хорошее согласие с экспериментальными данными. Для структуры sI с пустыми молекулярными полостями были рассчитаны плотность электронных состояний N(E) и энергетическая зонная структура, которая представляет собой зависимость энергий электронов от волнового вектора $E(\mathbf{k})$. Также, в диапазоне температур T = [180; 260] для гидратов метана с кубической структурой sI и гексагональной структурой sH, а также для каркаса sH с пустыми молекулярными полостями были рассчитаны плотности электронных состояний N(E).

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ПОЛИМОРФНЫХ ПРЕВРАЩЕНИЙ В ZrO₃ КЕРАМИКАХ ПРИ ОБЛУЧЕНИИ ТЯЖЕЛЫМИ ИОНАМИ

М. Алин $^{1)}$, А.Л. Козловский $^{2*)}$

 1) Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан
 1) Институт ядерной физики МЭ РК, Алматы, Казахстан
 *) e-mail: kozlovskiy.a@inp.kz

В работе представлены результаты оценки вклада энергии налетающих ионов на степень полиморфных превращений в $\rm ZrO_2$ керамиках. Для реализации данной задачи были выбраны тяжелые ионы $\rm Xe^{22+}$ с энергиями 160 MэB, 200 МэВ и 230 МэВ. Флюенс облучения составил $\rm 10^{13}\text{-}10^{14}$ ион/см², который соответствуют эффекту перекрывания дефектных областей примерно 10-100 крат, в зависимости от флюенса облучения. Выбор данного типа ионов обусловлен возможностью моделирования эффекта радиационных повреждений сравнимых с воздействием осколков деления ядер урана в атомном реакторе.

Установлено, что полные полиморфные превращения в ZrO_2 керамиках типа t- $ZrO_2 \rightarrow c$ - ZrO_2 происходят в случае, когда энергия налетающих ионов Xe^{22+} превышает 200 МэВ. В случае, когда энергия меньше данной величины в структуре облученного слоя остаются примесные включения тетрагональной фазы, содержание которых не превышает 5 %.

ОСОБЕННОСТИ ПОВЕДЕНИЯ ВОДОРОДНОЙ ПОДСИСТЕМЫ В ПАЛЛАДИИ ПРИ ЛОКАЛЬНОМ ВОЗДЕЙСТВИИ

Л.Ю. Немирович-Данченко 1,2,* , Л.А. Святкин $^{1)}$, И.П.Чернов $^{1)}$

¹⁾ НИ ТПУ, г. Томск, Россия ²⁾ ТУСУР, г. Томск, Россия ^{*)} e-mail: ndlyu@tpu.ru

Радиационно-стимулированная миграция водорода в металлах и сплавах под действием гамма–квантов и нейтронов изучаются уже многие годы в связи с проблемой водородного охрупчивания материалов. Экспериментальные результаты свидетельствуют, что изотопы водорода, занимая междоузельные положения в решетке металла, образует собственную водородную подсистему. Энергия, вносимая в процессе радиационного воздействия, аккумулируется водородной подсистемой, в результате чего атомы изотопов водорода приобретают существенно большую энергию, по сравнению с атомами матрицы /1/. Целью настоящей работы является выявление особенностей реакции водородной подрешетки в системе Pd-H на локальное смещение атома водорода из состояния равновесия в междоузлии.

Все расчеты выполнялись в рамках теории функционала электронной плотности методом псевдопотенциала, реализованным в пакете программ ABINIT. В работе рассчитан перенос заряда по Бадеру и силы, действующие на атомы в системе Pd-H при локальном возбуждении ее водородной подрешетки. Установлено, что при смещении атома водорода из центра междоузлия имеет место перенос электронного заряда преимущественно к соседним атомам палладия и водорода.

ЛИТЕРАТУРА

- 1. Yu.I. Tyurin, V.S. Sypchenko, N.N. Nikitenkov, Hongru Zha, I.P. Chernov, // Int.
- J. Hydrogen Energy, 2019, Vol. 4, p. 20223.

ВЛИЯНИЕ ПАРАМЕТРОВ МЕХАНОСИНТЕЗА КОМПОЗИТНОГО МАТЕРИАЛА-НАКОПИТЕЛЯ ВОДОРОДА НА ОСНОВЕ ГИДРИДА МАГНИЯ И УГЛЕРОДНЫХ НАНОТРУБОК

Эльман Р.Р.^{1*)}, Курдюмов Н.¹, Кудияров В.Н.¹

¹Томский политехнический университет, Отделение экспериментальной физики, Томск, Россия.

*) E-mail: rre1@tpu.ru

Гидрид магния, который рассматривается в качестве материаланакопителя водорода, обладает высокой температурой десорбции, которую возможно снизить за счет добавления углеродных нанотрубок (УНТ). Существуют противоречивые данные о влиянии УНТ на свойства Mg/MgH₂ [1, 2], что делает актуальным проведение экспериментов по определению влияния методики получения композитов на основе гидрида магния и углеродных нанотрубок.

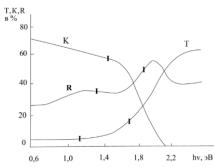
 ${
m B}$ данной работе производился синтез композитов MgH2–УНТ в планетарной мельнице при разном времени и скорости измельчения. Были оценены свойства десорбции из полученных композитов. При помощи дифракционных измерений с использованием синхротронного излучения была получена детальная информация о фазовых переходах в композите во время термостимулированной десорбции.

Выяснено, что скорость измельчения 300 об/мин и время измельчения 180 минут являются минимально необходимыми параметрами, приводящими к лучшему каталитическому эффекту.

Исследование выполнено при финансовой поддержке Государственного задания в рамках научного проекта № FSWW-2021-0017.

ЛИТЕРАТУРА

1. Cai W. et al. Positive and negative effects of carbon nanotubes on the hydrogen sorption kinetics of magnesium // The Journal of Physical Chemistry C. 2015. Vol. 119, N.45. P. 25282–25290.


ИЗУЧЕНИЕ СОСТАВА И ЭЛЕКТРОННОЙ СТРУКТУРЫ ПЛЕНОК CdS ИМПЛАНТИРОВАННОЙ ИОНАМИ КИСЛОРОДА

Б.Е. Умирзаков¹, З.А. Исаханов², Ж.Ш. Содикжанов², А.Ш. Усмонкулов

¹ТГТУ 100095 Ташкент, Узбекистан ²Институт ионно-плазменных и лазерных технологий 100125 Ташкент, Узбекистан za.isakhanov@gmail.com

Оксид кадмия (CdO) представляет собой малоисследованный материал. В наших исследованиях тонкие пленки CdO и CdS получены на поверхности CdS имплантацией ионов O_2^+ с последующим отжигом. Получены ожеспектры CdS, имплантированного ионами O_2^+ с E_0 =1кэВ при D=8·10¹⁶ см⁻² до и после прогрева при T≈900 K в течение 30 мин. При этом интенсивности ожепиков характерные для CdS резко уменьшался, и появлялся пики характерных для Cd+S+O, Cd+O и свободных атомов Cd, O и S. После прогрева появлялся пленка с примерным составом CdO_{0.7}S_{0.3} с толщиной ~30Å поликристаллической структурой. На рисунке приведены спектры поглощения (T) пропускания (K) и отражения (R) света для пленки CdO_{0.7}S_{0.3}/CdS, измеренные спектрофотометром UV-1280. Отметим, что K начиная $hv\approx2$ эВ резко уменьшалась и при $hv\approx2.5$ составляло практически 2-3 %. По-видимому, наличие в пленке CdO_{0.7}S_{0.3} различных дефектов и образования переходного слоя между CdOS/CdS приводит к некоторому ухудшению прозрачности трехкомпонентной пленки.

Измерение ρ CdO_{0.7}S_{0.3} составяла \sim 10⁻² мкОм·см, что более 10³ раза меньше, чем чистой пленки CdS. Эти результаты позволяют использовать пленок CdO_{0.7}S_{0.3} в различных устройствах, в частности солнечных элементах в качестве прозрачных пленок и контактирующих слоев.

Зависимости коэффициентов поглощения T, пропускания K и отражения R от энергии фотонов для системы $CdO_{0.7}S_{0.3}/CdS$.

МАСС-СПЕКТРОСКОПИЯ ПОВЕРХНОСТИ Si, ИМПЛАНТИРОВАННОГО ИОНАМИ ${\rm O_2}^+$

 Γ .Х. Аллаярова¹, М. Жамуратова¹, Б.Е. Умирзаков²

КарГУ, г.Карши, Узбекистан.

²Ташкентский Государственный технический университет, г. Ташкент, Узбекистан

*)e-mail: allayarova5030@mail.ru

Результаты вторичной ионной масс-спектрометрии (ВМИС), измеренные нами до отжига образца, показали, что на поверхности Si, наряду с интенсивными пиками Si, их соединений с кислородом четко выделяются пики тяжелых масс Si₂O SiO, SiO₂.

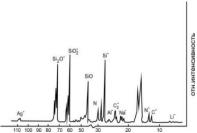


Рис. Масс- спектр Si, имплантированного ионами O_2^+ с $E_0 = 1$ кэB при $D = 6 \cdot 10^{16}$ см⁻², записанный при бомбардировке ионами Cs^+ с $E_0 = 6.7$ кэB

После отжига поверхность полностью очищается от атомов водорода и от двухкомпонентных примесей, и на поверхности содержатся только атомы кислорода и углерода общая концентрация которых не превышается 1,5 -2 ат.%. После достижения вакуума - 10^{-7} Па в отсек прибора напускали кислород. На рис. приведен масс-спектр отрицательных ионов для Si, имплантированного ионами O_2^+ с $E_0=1$ кэВ при дозе облучения $D=D_{\rm H}=6\cdot 10^{16}$ см⁻². Массспектры записывались при бомбардировке образца ионами C_3^+ с $E_0=6,7$ кэВ. Видно, что в спектре содержатся интенсивные пики SiO_2 , субоксидов Si (SiO и Si_2O) и несвязанных атомов Si и O. Наряду этими пиками обнаруживаются малоинтенсивные пики различных примесных атомов, общая концентрация которых не превышает 0,1 ат.%.

ИЗМЕНЕНИЕ СВОЙСТВ БЕТА- Ga_2O_3 ПОД ДЕЙСТВИЕМ ИМПЛАНТАЦИИ ИОНОВ Si^+

А.А. Никольская¹⁾, Д.С. Королев¹⁾, А.Н. Михайлов¹⁾, А.И. Белов¹⁾, А.В. Кудрин¹⁾, А.В. Нежданов¹⁾, В.Н. Трушин¹⁾, Д.Е. Николичев¹⁾, Р.Н. Крюков¹⁾, Е.А. Питиримова¹⁾, А.А. Ревин¹⁾, А.А. Конаков¹⁾, М. Китаг²⁾, R. Giulian³⁾, Д.И. Тетельбаум¹⁾

¹⁾ ННГУ им. Н.И. Лобачевского, Нижний Новгород, Россия
²⁾ IIT Jodhpur, India
³⁾ University of Rio Grande do Sul, Brazil

Разработка приборов на основе оксида галлия является одним из наиболее перспективных направлений современной электронной техники. Этот сверхширокозонный полупроводник обладает преимуществами позволяющими использовать его для ряда прикладных задач. Метод ионной имплантации широко применяется в электронной технике для эффективного управления электрическими и другими свойствами полупроводников. Но для оксида галлия этот метод еще недостаточно изучен с физической точки зрения и требует более детальных исследований.

В настоящей работе изучено влияние облучения ионами Si^+ на структурные, оптические и электрические свойства монокристаллов β - Ga_2O_3 с разными ориентациями поверхности – (-201) и (010). Установлена зависимость структурного совершенства от ориентации поверхности образцов. Показано, что электрические свойства имплантированных слоев β - Ga_2O_3 определяются конкурирующим влиянием радиационных дефектов и активацией внедренной примеси. Произведено сравнение экспериментальных результатов с расчётными.

Работа выполнена при поддержке РФФИ (№19-57-80011). Никольская А.А. признательна за поддержку в рамках Стипендии Президента РФ (СП-1894.2021.5).

Секция **V**

РАДИАЦИОННЫЕ ЭФФЕКТЫ В НАНОСТРУКТУРАХ (НАНО- И БИО- ОБЪЕКТЫ)

РАСПРЕДЕЛЕНИЯ РАДИАЦИОННЫХ ДЕФЕКТОВ ПО ГЛУБИНЕ ПРИ ИОННОМ ОБЛУЧЕНИИ КРЕМНИЯ

Н.В. Новиков*, Н.Г. Чеченин, А.А. Широкова НИИЯФ МГУ, Москва, Россия *e-mail: nynovikov65@mail.ru

В диапазоне энергии ионов E_0 от 100 кэВ до 10 МэВ исследуется количество дефектов (вакансий и замещений) в облученном кремнии от глубины слоя x и угла падения α . Распределение плотности дефектов n(x) описывается асимметричным максимумом на глубине $x_{max}(E_0, \alpha)$.

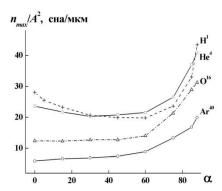


Рис.1 Отношение максимальной плотности дефектов $n_{max}(x_{max})$ при облучении кремния ионами с энергией E_0 = 0.5 МэВ под углом падения α и квадрата массы A налетающего иона. Результаты расчетов по программе SRIM /1/ для ионов: (+) – H¹, (\square) – He⁴, (Δ) – O¹6, (o) – Ar⁴0.

Результаты расчетов на рис.1 показывают почти квадратичную зависимость $n_{max}(x_{max})$ от массы иона A. Возрастание n_{max} при $\alpha > 45^{\circ}$ объясняется увеличением потока ионов в поверхностных слоях мишени.

ЛИТЕРАТУРА

1. Ziegler J., Biersack J. P. // SRIM: the Stopping and Range of Ions in Matter (www.srim.org).

СРАВНЕНИЕ НАКОПЛЕНИЯ РАДИАЦИОННЫХ ПОВРЕЖДЕНИЙ в Ga₂O₃ и GaN

А.И. Титов¹⁾, К.В. Карабешкин¹⁾, А.И. Стручков¹⁾, П.А. Карасев¹⁾, А.Ю. Азаров²⁾, Д.С. Гогова³⁾

¹⁾Политехнический ун-т Петра Великого, СПб, Россия ²⁾Университет Осло, Осло, Норвегия ³⁾Болгарская академия наук, София, Болгария

Механизмы дефектообразования при имплантации ионов в широкозонные полупроводники изучены пока недостаточно. Особенно это относится к ионному облучению оксида галлия. В настоящей работе мы проводим сравнение накопления радиационных повреждений в двух полиморфах оксида галлия (α -Ga₂O₃ и β -Ga₂O₃) и в GaN, облучаемых ионами фосфора с энергией 40 кэВ. Измерения кинетики накопления структурных нарушений проводились методом резерфордовского обратного рассеяния каналируемых ионов He (RBS/C).

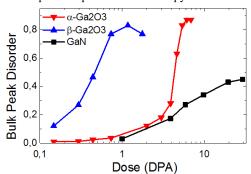
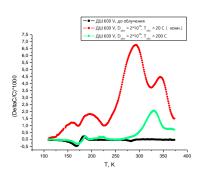


Рис.1. Дозовые зависимости объемного максимума дефектов в GaN, α -Ga₂O₃, β -Ga₂O₃ при облучении ионами Р 40 кэВ.

Показано, что α -Ga₂O₃ значительно более устойчив к радиационным повреждениям, чем β -Ga₂O₃, хотя и уступает в этом отношении GaN. Для обоих форм оксида галлия повреждения в объеме насыщаются на уровне $\sim 90\%$ от полной аморфизации, что существенно выше, чем для GaN. Прослежена также кинетика разупорядочения приповерхностного слоя. Результаты говорят о различиях в механизмах формирования радиационных дефектов в α - и β - оксидах галлия.


ВЛИЯНИЕ ТЕМПЕРАТУРЫ ОБЛУЧЕНИЯ ЭЛЕКТРОНАМИ НА ОБРАЗОВАНИЕ РАДИАЦИОННЫХ ДЕФЕКТОВ В КАРБИДЕ КРЕМНИЯ

В.В. Козловский 1* , А.Э. Васильев 1 , А.А. Лебедев 2 , М.Е. Левинштейн 2 , К.С. Лавыловская 2

1) Санкт-Петербургский политехнический университет Петра Великого, 195251, Санкт-Петербург, Россия

²⁾ Физико-технический институт им. А.Ф.Иоффе Российской академии наук, 194021, Санкт-Петербург, Россия
*)e-mail: kozlovski@physics.spbstu.ru

В карбиде кремния вследствие низкой подвижности первичных радиационных дефектов реализуется относительно редкая ситуация, когда последствия облучения при комнатной температуре определяются собственными дефектами решетки. При этом вклад вторичных процессов в дефектообразование практически не ощущается. Усиление роли вторичных процессов в прин-

ципе может быть достигнуто изменением температуры облучения. Нами выполнено исследование влияния температуры облучения электронами на энергетические спектры радиационных дефектов в карбиде кремния политипа 4H n-типа проводимости. Спектры радиационных дефектов измерялись методом емкостной спектроскопии. Пример такого спектра приведен на рис.1.

Рис.1. Спектр радиационных дефектов в n-4H-SiC до и после облучения электронами при температуре 20 и 200° C.

Анализ, сделанный на основе большого количества измеренных спектров, позволяет предположить, что при повышении температуры облучения происходит не просто изменение количества вводимых дефектов, а кардинально изменяется их спектр. Работа выполнена при поддержке РНФ, проект № 22-12-00003.

ВЛИЯНИЕ ФЛЮЕНСА ЭЛЕКТРОНОВ НА КОНПЕНТРАПИЮ ПЕНТРОВ ОКРАСКИ В ПОЛЫХ ЧАСТИЦАХ ОКСИДА АЛЮМИНИЯ

В.Ю. Юрина^{1*)}, А.Н. Дудин¹⁾, В.В. Нешименко¹⁾, М.М. Михайлов²⁾

1) Амурский государственный университет, Благовещенск, Россия 2) Томском государственном университете систем управления и радиоэлектроники, Томск, Россия

*) e-mail: viktoriav-09@mail.ru

Материалы на основе наноструктурированных частиц оксида алюминия находят широкое применение в микроэлектроники. Интересна потенциальная возможность применения полых наноструктурированных частиц оксида алюминия в качестве пигмента для различных покрытий, в том числе терморегулирующих и радиационно-стойких.

Влияние флюенса электронов ($E_e = 30$ кэВ, $\Phi_e = 1 - 7.10^{16}$ см⁻²) на концентрацию центров окраски в полых частицах оксида алюминия микронных размеров анализировали по спектрам диффузного отражения в области от 200 до 2500 нм *in situ* в сравнении с результатами для объемных частии оксида алюминия микронных размеров.

Радиационную стойкость исследуемых микросфер оценивали относительно микропорошков по разностным спектрам диффузного отражения ($\Delta \rho_E$), полученных вычитанием спектров после облучения из спектров необлученных образцов.

Установлено, что радиационная стойкость микросфер оксида алюминия к воздействию электронов энергией 30 кэВ флюенсом от 1 до $7.10^{16}~{\rm cm}^{-2}$ по сравнению с радиационной стойкостью микрочастиц оксида алюминия больше на 19 %.

Увеличение радиационной стойкости полых частиц микронных размеров оксида алюминия по сравнению с радиационной стойкостью объемных микрочастиц обусловлено малой концентрацией индушированных дефектов анионной подрешетки $O_{i}^{''}$, $O_{i}^{'}$, O_{i}^{X} , $V_{O}^{"}$, V_{O}^{X} .

THE INFLUENCE OF ION BEAM IRRADIATION ON THE MAGNETIC AND ELECTRICAL PROPERTIES OF CARBON NANOTUBES

E.M. Elsehly^{1, *)}, A.P. Evseev²), Yu.V. Balakshin²), A.A. Shemuhin²), N.G. Chechenin²)

¹⁾ Damanhour University, Egypt

²⁾ SINP MSU, Russia

*) elsehlyfigo@yahoo.com

Recent experiments on ion irradiation of carbon nanotubes have revealed a wealth of intriguing phenomena. It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of carbon nanotubes [1, 2]. Synthesized and commercial multi-wall carbon nanotubes (MWCNTs) have been studied from the point of view of their magnetic and electrical properties. MWCNTs were irradiated by He⁺ ions of the energy E=100 keV. The structure, composition, electrical, and magnetic properties of MWCNTs irradiated with a dose of 10^{16} cm⁻² were investigated by SEM, X-ray analysis and VSM techniques. Catalyst particles are usually encapsulated in the nanotubes and influence the magnetic response of the samples. It was revealed that the morphology of the magnetic particles inside MWCNTs was changed. Radiation defects lead to the deterioration of the magnetic and electrical properties of CNTs.

REFERENCES

- 1. E.M. Elsehly, et al. Morphological and structural modifications of multiwalled carbon nanotubes by electron beam irradiation, Material research express, 2016, Vol. 3, 105013.
- 2. E.M. Elsehly, N.G. Chechenin, A.V. Makunin, A.A. Shemukhin, H. A. Motaweh, Eur. Phys. J. D, **71**, 79 (2017). DOI: <u>10.1140/epjd/e2017-70658-0</u>

MODIFICATION OF THE RESISTANCE OF A GRAPHENE LAYER BY A 1-10 KEV ELECTRON BEAM

Moyano K.¹, Reinoso C.², Nuñez S.¹, Costa C.¹, Pérez B.¹, Santacruz C.¹, Irribarra E.^{1,*}

Escuela Politécnica Nacional, Quito, Ecuador
 University Yachay Tech, Urcuqui, Ecuador
 e-mail: esteban.irribarra@epn.edu.ec

Multiple applications of graphene have been proposed owing to its unique physical, chemical, and electrical properties [1]. It should be noted that those characteristics can be modified in-situ by irradiation [2]. For example, the resistance of graphene films is reduced when irradiated by 25 keV electrons [3].

In this work, the modifications of the resistance of a graphene layer caused by irradiation with 1-10 keV electrons for 5-30 minutes are studied. Graphene was obtained by electrochemical methods and deposited by spray coating in 10 mm square glass substrates. The resistance of the film was measured by the Van der Pauw's method, and the properties of the graphene films were also studied using Raman and XPS spectroscopy.

REFERENCES

- 1. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, "Synthesis of Graphene and Its Applications: A Review," Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, Feb. 2010, doi: 10.1080/10408430903505036.
- 2. J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, Y. Mo, and J. M. Perez, "Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene," Carbon, vol. 48, no. 8, pp. 2335–2340, Jul. 2010, doi: 10.1016/J.CARBON.2010.03.010.
- 3. P. Gulia, R. Brajpuriya, S. Kumar, and A. Tripathi, "Synthesis of graphene oxide thin film and effect of electron beam irradiation," AIP Conference Proceedings, vol. 1832, no. 1, p. 140023, May 2017, doi: 10.1063/1.4980805.

ОПРЕДЕЛЕНИЕ НЕУСТОЙЧИВОСТИ ГАЗОВОГО РАЗРЯДА И ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ КОЛЬЦЕВОГО ГЕЛИЙ-НЕОНОВОГО ЛАЗЕРА В СИСТЕМЕ ИНЕРЦИАЛЬНОЙ НАВИГАЦИИ

Чиркин М.В.¹, Устинов С.В.^{1*}, Мишин В.Ю.¹, Серебряков А.Е.¹

 $^{1)}$ Рязанский Государственный Радиотехнический Университет имени В.Ф. Уткина, г. Рязань, Россия.

*)ustinow62@yandex.ru

Выявлен предел уменьшения нестабильности дрейфа (см. Рис. 1). При 60000 с нестабильность дрейфа крайне мала, что явилось следствием уменьшения тока горения разряда до 560 мкА. Кроме ресурса выявлена более важная причина с точки зрения эксплуатации кольцевого лазера это уменьшение нестабильности дрейфа, вызванная различием условий движения возбужденных атомов неона в активной среде. Уменьшение тока горения приводит к увеличению ресурса эксплуатации, а также к уменьшению ионного потока на катод и, как следствие, более медленное распыление.

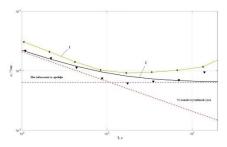


Рис. 1. Зависимость девиации Аллана от времени усреднения отсчетов лазерного гироскопа (кривая 1), 2— с учетом изменений напряженности продольного электрического поля в зависимости от концентрации посторонних примесей в активной среде.

Выводы

- 1. Нестабильность дрейфа выходного сигнала лазерного гироскопа вследствие переноса газа в каналах кольцевого гелий-неонового лазера под действием газового разряда обусловлена изменениями напряженности продольного электрического поля в зависимости от концентрации посторонних примесей в активной среде и снижается при уменьшении тока разряда.
- 2. Рост температуры газового наполнения кольцевого гелий-неонового лазера сопровождается изменением концентрации метастабильных атомов в положительном столбе и, как следствие, увеличением частоты изменения знака у действительной части его комплексного сопротивления.
- 3. Пороговое значение тока разряда в кольцевом гелий-неоновом лазере, при котором стационарное состояние электрической цепи теряет устойчивость, является монотонно возрастающей функцией температуры газового наполения.

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ДОПИРОВАНИЯ ОКСИДОМ МАГНИЯ ZrO₂ КЕРАМИК НА ПОВЫШЕНИЕ РАДИАЦИОННОЙ СТОЙКОСТИ

А. Курахмедов¹⁾, А.Л. Козловский 2*)

¹⁾ Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан
¹⁾ Институт ядерной физики МЭ РК, Алматы, Казахстан
*) e-mail: kozlovskiy.a@inp.kz

Цель данного исследования заключается в оценке эффективности допирования MgO ZrO₂-керамик к радиационному распуханию и полиморфным превращениям в результате облучения тяжелыми ионами. Интерес к данным типам материалов обусловлен большими перспективами их использования в качестве конструкционных материалов реакторов нового поколения. В ходе проведенных работ установлены зависимости формирования фазового состава и изменения структурных параметров при изменении концентрации MgO. Установлено, что основным механизмом изменения структурных свойств керамик, является вытеснение кубической фазы с-ZrO₂ фазой замещения Zr_{0.9}Mg_{0.1}O₂, приводящей к увеличению стабильности свойств керамик к облучению. Определено, что увеличение концентрации MgO приводит к формированию примесной фазы $Zr_{0.9}Mg_{0.1}O_2$ по типу замещения, приводящей к изменению структурных параметров керамик. В ходе исследований изменений прочностных свойств керамик, подвергнутых облучению, установлено, что формирование в структуре Zr_{0.9}Mg_{0.1}O₂ фазы приводит к повышению устойчивости к растрескиванию и охрупчиванию поверхностного слоя керамик.

ИЗУЧЕНИЕ РАДИАЦИОННОЙ СТОЙКОСТИ СеО₂ МИКРОКОМПОЗИТОВ МОДИФИЦИРОВАННЫХ ИТТРИЕМ

Р. Рспаев¹⁾, А.Л. Козловский^{2*)}

1) Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан 1) Институт ядерной физики МЭ РК, Алматы, Казахстан *) e-mail: kozlovskiy.a@inp.kz

Одними из перспективных материалов для инертных матриц ядерного топлива являются CeO₂ микрокомпозиты. При этом получение новых данных о стойкости микрокомпозитов к радиационному повреждению, а также оценка перспектив повышения стойкости за счет легирования могут быть использованы в дальнейшем для определения рабочих характеристик материаловкандидатов в инертные матрицы ядерного топлива.

В работе представлены сравнительные результаты оценки радиационной стойкости CeO_2 микрокомпозитов допированных иттрием при облучении тяжелыми ионами Kr^{15+} и Xe^{22+} с энергиями 150-230 МэВ, сравнимых с осколками деления ядер урана. В ходе исследования установлены зависимости радиационной стойкости микрокомпозитов от флюенса облучения, которые указывают на то, что допирование иттрием существенно увеличивает устойчивость к охрупчиванию и структурной деградации.

ИССЛЕДОВАНИЕ ПРОЦЕССОВ ГАЗОВОГО РАСПУХАНИЯ В Li₂ZrO₃ КЕРАМИКАХ ПРИ ОБЛУЧЕНИИ ИОНАМИ ГЕЛИЯ

Б. Абышев 1 , А.Л. Козловский 2*)

1) Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан 1) Институт ядерной физики МЭ РК, Алматы, Казахстан *) e-mail: kozlovskiy.a@inp.kz

В работе представлены результаты исследования процессов и механизмов гелиевого распухания приповерхностного слоя литийсодержащих керамик Li₂ZrO₃ подверженных облучению ионами гелия с флюенсами 10¹⁶-10¹⁸ ион/см². В ходе проведенных исследований установлено, что основной механизм гелиевого распухания связан с процессами накопления гелия в узлах и междоузлиях кристаллической решетки, а также вблизи границ зерен. При этом наличие примесных фаз ZrO₂ приводит к снижению величины распухания, что обусловлено наличием дополнительных границ зерен, препятствующих накоплению гелия и его последующей агломерации. В ходе исследований установлено, что при флюенсах облучения 10¹⁶-10¹⁷ ион/см² основные вклады в структурную деградацию вносят деформации кристаллической решетки, а также частичное дробление зерен, приводящее к увеличению дислокационной плотности. При этом увеличение дислокационной плотности для керамик, содержащих примесные включения ZrO₂ приводит к снижению скорости деградации и распухания кристаллической решетки.

ВЛИЯНИЕ ДВУХФАЗНОГО СОСТОЯНИЯ Li₂ZrO₃ КЕРАМИК НА УСТОЙЧИВОСТЬ К РАДИАЦИОННЫМ ПОВРЕЖДЕНИЯМ

Б. Абышев¹⁾, А.Л. Козловский^{2*)}

- 1) Евразийский национальный университет им. Л.Н. Гумилева, Нур-Султан, Казахстан
 - 1) Институт ядерной физики МЭ РК, Алматы, Казахстан *) e-mail: kozlovskiy.a@inp.kz

Как известно, одним из способов повышения устойчивости к радиационным повреждениям и последующей деградации структурных и прочностных свойств при накоплении точечных и вакансионных дефектов в структуре поврежденного слоя, является создание дополнительных препятствий в виде дислокаций и границ зерен. Для проверки данной гипотезы в работе приведены результаты исследования влияния наличия двух фаз в структуре ${\rm Li}_2{\rm ZrO}_3$ керамик, подверженных облучению тяжелыми ионами ${\rm Kr}^{15+}$. В ходе проведенных экспериментов установлено, что наличие двух фаз приводит к снижению степени распухания кристаллической решетки, а также упрочнению поврежденного слоя к механическим повреждениям. Основным механизмом ответственным за данное увеличение устойчивости к радиационной деградации поврежденного слоя является изменение дислокационной плотности на границах зерен за счет наличия примесных фаз, что приводит к созданию препятствий накоплению радиационных повреждений в структуре.

В результате проведенных исследований установлено, что наличие примесных фаз приводит к уменьшению степени размягчения приповерхностного слоя в 3-4 раза по сравнению с однофазными керамиками при максимальном флюенсе облучения 10^{15} ион/см².

СВОЙСТВА ТОЧЕЧНЫХ ДЕФЕКТОВ И РАДИАЦИОННАЯ СТОЙКОСТЬ CoCrFeNi И HfNbTiZr СПЛАВОВ

И.В. Сафронов^{1*}, В.В. Углов^{1,2}, С.В. Злоцкий¹, Н.А. Степанюк¹, Д.В. Есипенко¹
¹⁾ БГУ, Минск, Беларусь
²⁾ НИЯУ МИФИ, Москва, Россия
*fiz.safronoy@mail.ru

В работе проведены расчеты энергии образования точечных дефектов в однофазных CoCrFeNi (ГЦК) и HfNbTiZr (ОЦК) сплавах методом молекулярной статики. В исходных структурах учитывалось наличие химического ближнего порядка, а вычисление энергетической характеристики осуществлялось через предварительно смоделированные химические потенциалы. Выявлено. что распределения энергии образования как вакансий, так и междоузельных атомов для HfNbTiZr сплава охватывают существенно больший диапазон энергий, чем для CoCrFeNi сплава: (-2,6; 4,6) против (0,74; 2,2) эВ для вакансий и (0,08; 8,1) против (4,2; 6,5) эВ для междоузельных атомов в наиболее стабильных гантельных конфигурациях. Обнаружено, что для HfNbTiZr сплава характерны отрицательные значения энергии образования вакансий Ті, что означает возникновение термодинамической движущей силы в системе, направленной на уменьшение ее свободной энергии через повышение концентрации вакансий. Последнее предполагает, что HfNbTiZr сплав может быть подвержен большему радиационному распуханию, чем CoCrFeNi сплав. Однако, данный вывод нуждается в дальнейшем исследовании миграционных барьеров в рассматриваемых сплавах. Касательно распределений энергии образования междоузельных атомов, в работе продемонстрировано, что наименьшие значения данной величины свойственны <110> Nb-Nb и Nb-Ti гантельным парам в HfNbTiZr сплаве, а в CoCrFeNi сплаве для <100> Co-Cr и Ni-Cr гантельных пар, что подразумевает наличие в этих сплавах соответствующих предпочтительных диффузионных путей. Работа выполнена в рамках проекта БРФФИ № Т20ПТИ-009 (BITBLR2020019).

СВОЙСТВА УГЛЕРОДНЫХ СЛОЕВ, ПОДВЕРГНУТЫХ ИОННОМУ ОБЛУЧЕНИЮ

Ю.А. Данилов, Ю.А. Дудин, Р.Н. Крюков, В.П. Лесников, А.В. Нежданов, Е.А. Питиримова * , А.С.А.С. Ранавира

Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия *) e-mail: pitirimova@phys.unn.ru

Углеродные слои толщиной от 4 до 60 нм были выращены методом импульсного лазерного нанесения (ИЛН) в вакууме при 500°С. Для ИЛН применяли лазер на АИГ:Nd (длина волны 532 нм, длительность импульса 10 – 12 нс. энергия в импульсе 250 мДж), сфокусированный на врашающейся мишени пластине пирографита. В качестве подложек использовали монокристаллический i-GaAs(001) или Si пластины с термически выращенным SiO₂. Образцы подвергались облучению ионами N^+ (15 кэВ) или S^+ (40 кэВ) на ускорителе ИЛУ-3. Исходные С-слои представляют собой нанокристаллический графит (многослойный графен). В межатомных связях преобладает гибридизированный углерод (более 80 %). По данным электронографии в результате имплантации ионов S^+ с дозой уже 10^{14} см $^{-2}$ структура C-слоев меняется от характерной для мелкозернистого поликристалла (исходный образец) до аморфной. Для исходного С-слоя в спектре комбинационного рассеяния света хорошо разделяются пики G (линия, характерная для всех графитоподобных материалов с sp² гибридизацией атомов углерода) при 1603 см⁻¹ и D (линия, связанная с разупорядочением в графеновой плоскости) при 1368 см⁻¹. С увеличением дозы ионов N⁺ происходит уширение пиков G и D и их слияние при дозе ионов 10^{15} см $^{-2}$, что явно связано с разупорядочением структуры Сспоя.

Работа выполнена при поддержке Программы стратегического академического лидерства «Приоритет-2030» (ННГУ им. Н.И. Лобачевского, проект H-480-99).

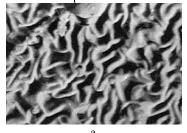
РАДИАЦИОННАЯ СТОЙКОСТЬ ДВУХСЛОЙНЫХ ПОЛЫХ ЧАСТИЦ SiO_2/ZnO ПРИ ОБЛУЧЕНИИ ПРОТОНАМИ

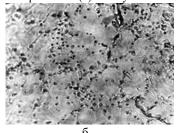
А.Н. Дудин^{1,*)}, В.В. Нещименко¹⁾, Ли Чундун²⁾

1) Амурский государственный университет, Благовещенск, Россия
2) Харбинский политехнический университет, Харбин, Китай
*) e-mail: andrew.n.dudin@gmail.com

Представлены результаты исследования оптических свойств и радиационной стойкости к воздейсвтию протонов порошков-пигментов на основе двухслойных сферических частиц с внутренним слоем из диоксида кремния и внешним из оксида цинка микронных размеров.

Полученные спектры диффузного отражения (ρ_{λ}) позволили установить, что исследуемые пигменты на основе двухслойных полых частиц SiO₂/ZnO имеют высокие значения коэффициента отражения во всем спектральном диапазоне по сравнению с порошками на основе объемных частиц ZnO. Радиационную стойкость исследуемых полых частиц оценивали по разностным спектрам диффузного отражения ($\Delta \rho_E$). Анализировали значения интегрального коэффициента поглощения солнечного поглощения α_s .


Из полученных спектров $\Delta \rho_E$ следует, что при воздействии протонами с энергией 100 кэВ флюенсом 5×10^{15} см⁻² интенсивность полос наведенного поглощения в полых частицах SiO₂/ZnO меньше, чем в объемных частицах ZnO, а расчет изменений значений α_s показал увеличение радиационной стойкости порошков SiO₂/ZnO по сравнению с порошками ZnO на 20 %. Эффект увеличения радиационной стойкости полых частиц может быть обусловлен: высокой удельной поверхностью полых частиц, которая является стоком радиационных дефектов; присутствием фаз SiO₂, ZnSiO₃ и Zn₂SiO₄, которые обуславливают образование центров поглощения в УФ области спектра, снижая их концентрацию в видимой области спектра.


РАДИАЦИОННЫЕ ДЕФЕКТЫ ПРИ ИОННОЙ И ОЗОНОВОЙ ОБРАБОТКЕ СЕМЯН ХЛОПЧАТНИКА

А.И. Камардин, А.А. Симонов, М.П. Парпиев Научно-технический центр с КБ и ОП АН РУз Ташкент, Республика Узбекистан kadmon@bk.ru

Актуальной проблемой сельского хозяйства остаётся предпосевная обработка семян, в частности экологически чистыми методами /1/. При обработке семян в $\rm H_2SO_4$ происходит растравливание поверхности. Вакуумное облучение потоком ионов (до 125 кэВ) оголенных семян хлопчатника дает скарификацию поверхности (рис.1), а также изменение поверхностных слоев аналогичное обработке линейных полимеров, рост всхожести и других параметров развития растений (до 30%) при оптимальных дозах облучения ионами $\rm N^+$, $\rm O^+$, $\rm C^+$ (порядка $\rm 10^{15}~cm^{-2}$, плотность тока до 0,5-1,0 мк $\rm A/cm^2$). С ростом доз и масс ионов радиационное воздействие усиливается, а развитие семян полностью подавляется.

Рис.1 Поверхность после химического травления (а) и облучения О+(б)

Воздействие вакуумного тлеющего разряда и обработка озоносодержащими газами заметных изменений топологии поверхности не дает. При оптимальной экспозиционной дозе озона (порядка $1,5\cdot 10^4~\rm r\cdot c/m^3$) заметно (до 20-40%) улучшаются посевные качества и развитие семян. Возможными механизмом при облучении ионами является нарушение оболочки семян, а при обработке озоном окислительный стресс и подавление роста возбудителей заболеваний хлопчатника.

ЛИТЕРАТУРА

1. Козьмин Г.В., Гераськин С.А., Санжарова Н.И. Радиационные технологии в сельском хозяйстве и пищевой промышленности. Обнинск: ВНИИРАЭ, 2015, 400 с.

ОБРАЗОВАНИЕ АГРЕГАТНЫХ ЦЕНТРОВ НА ПОВЕРХНОСТИ ФТОРИДА ЛИТИЯ ПРИ ВЫСОКОТЕМПЕРАТУРНОМ ОТЖИГЕ

У.Б. Шаропов^{1,2,*)}

- $^{1)}$ НИИ Физики Полупроводников и Микроэлектроники НУУз
- 2) Физика технический институт АН РУз, Ташкент, Узбекистан

Поверхностно-чувствительным методом спектроскопии полного тока [1] нами изучались энергетические, дозовые зависимости дефектообразования в системе LiF/Si(111). В дальнейшем проведено исследования температурных зависимостей образования агрегатных центров - коллоидов и агрегатов фтора на поверхности LiF/Si(111).

Анализ спектров ПТ показывает, что при температурном отжиге пленки LiF, на поверхности наблюдается образование F-H пары и последовательное образование агрегатных центров до их коалесценции в макромолекулы фтора и коллоидов.

Экспериментально показано, что температура увеличивает скорость межмолекулярных взаимодействий, за счет которого увеличивается концентрация коллоидных и галоидных агрегатов и последующей стабилизации их на поверхности. Из полученных данных показано, что высокотемпературный отжиг приводит к возбуждению поверхностных химических реакций, включая образование силицидов.

ЛИТЕРАТУРА

[1] U.B. Sharopov, // Thin Solid Films, 2021, V.735, 138902 https://doi.org/10.1016/j.tsf.2021.138902

О ВЛИЯНИИ МАГНИТОИМПУЛЬСНОЙ ОБРАБОТКИ НА СТРУКТУРУ ПОВЕРХНОСТИ И МАГНИТНЫЕ СВОЙСТВА ЛЕНТОЧНЫХ АМОРФНЫХ СПЛАВОВ Fe(Ni, Cu)(SiB)

М.Н. Шипко 1* , Т.П. Каминская 2 , М.А. Степович 3 , А.А. Вирюс 4 , А.И. Тихонов 1

1) Ивановский государственный энергетический университет им. В.И. Ленина, Иваново, Россия

²⁾Московский государственный университет им. М.В. Ломоносова, Москва, Россия

³⁾Калужский государственный университет им. К.Э. Циолковского, Калуга, Россия

⁴⁾ Институт экспериментальной минералогии им. Академика Д.С. Коржинского РАН, Черноголовка, Россия

*) e-mail: michael-1946@mail.ru

Методы растровой электронной и атомной силовой микроскопии совместно с измерениями магнитных характеристик до и после воздействия импульсами слабого магнитного поля (10...100 кА/м) низкой частоты

определяющих доменную структуру, магнитные свойства и магнитные потери при перемагничивании ленточных аморфных сплавов Fe(Ni, Cu)(SiB).

Установлено, что потери на перемагничивание в большой степени связаны с потерями, обусловленными вихревыми токами, и связаны с шириной доменов. (около 1,5 мкм), которая зависит от режимов магнитоимпульсной обработки незначительно. Полученные результаты исследований могут быть

(10...20 Гц) использованы для изучения особенностей состояния поверхности,

процессе изготовления аморфных лент.

Исследования проведены при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-03-00271).

использованы для уточнения методики снятия напряжений, возникающих в

ИЗМЕНЕНИЕ ЗАРЯДОВОГО СОСТОЯНИЯ МОП-СТРУКТУР С РАДИАЦИОННО-ИНДУЦИРОВАННЫМ ЗАРЯДОМ ПРИ СИЛЬНОПОЛЕВОЙ ИНЖЕКЦИИ ЭЛЕКТРОНОВ

Д.В. Андреев¹⁾, Г.Г. Бондаренко ²⁾, В.В. Андреев^{1,*)}, А.А. Столяров¹⁾

1) МГТУ им. Н.Э. Баумана, Калужский филиал, Калуга, Россия

 $^{2)}$ Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

*) e-mail: vladimir_andreev@bmstu.ru

В данной работе изучено влияние режимов сильнополевой инжекции электронов на изменение зарядового состояния и дефектности МОП-структур после радиационного облучения. В качестве ионизирующего излучения использовались α-частицы, протоны и гамма-излучение /1/. Показано, что после радиационного облучения МОП-структур сильнополевая инжекции электронов может приводить к стиранию большей части захваченного в оксиде положительного заряда в результате его аннигиляции при взаимодействии с инжектированными электронами.

Предложена модель, описывающая процесс аннигиляции радиационноиндуцированного положительного заряда при послерадиационной сильнополевой инжекции электронов. Полученные результаты могут быть использованы для расширения функциональных возможностей МОП-сенсоров радиационных излучений и определения условий их многократного использования, а также при прогнозировании надежности эксплуатации МОП-приборов в условиях воздействия радиации.

ЛИТЕРАТУРА

1. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. # Sensors. 2020. V.20. Is.8. P.2382(1-11).

КОМПАКТНЫЙ ГЕНЕРАТОР НЕЙТРОНОВ

А.А. Кленин^{1*}), А.Н. Олейник¹⁾, А.С. Кубанкин ^{1,2)}, А.С. Чепурнов^{1,3)}, М.А. Кирсанов⁴⁾

- 1) Лаборатория радиационной физики, Белгородский государственный национальный исследовательский университет, Белгород, Россия
 - 2) Физический институт им. П.Н. Лебедева РАН, Москва, Россия
- ³⁾ Научно-исследовательский институт ядерной физики им. Д.В. Скобельнына МГУ им. М.В. Ломоносова, Москва. Россия
 - ⁴⁾ Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

*) e-mail: StaRscReam046@gmail.com

Данная работа является прямым продолжением работы, представленной на MTK-50 «Создание источников ионов для компактных генераторов нейтронов».

В настоящее времени особенно актуальна разработка слабопоточного компактного отпаянного нейтронного генератора с контролируемой интеснивностью для проведения сеансов калибровки детекторов нейтрино и тёмной материи. Основные требования к такому нейтронному генератору: габаритные размеры 30х30х100 мм (ДхШхВ); возможность контролировать выход нейтронов в диапазоне от 100 до 1000 н/с.

В работе представлены результаты измерения нейтронного потока при различных энергиях налетающих ионов дейтерия и токе ионов.

Представлено количественное сравнение выхода нейтронов при использовании трёх различных мишеней из титана, спрессованных из порошка дейтерированного титана размером фракции от 100 мкм и меньше при идентичных условиях генерации излучения.

БЫСТРОДЕЙСТВИЕ И ВЕРХНИЙ ПРИДЕЛ ЛИНЕЙНОГО ДИАПАЗОНА ПОВЕРХНОСТНО-ИОНИЗАЦИОННЫХ ДЕТЕКТОРОВ

А.Ш. Раджабов, Д.Т. Усманов, С.С. Исхакова

Институт Ионно-плазменных и лазерных технологий имени У.А. Арифова АН РУ, Дурмон йули 33, 100125 Ташкент, Узбекистан, e-mail: a.radjabov0217@gmail.com

Исследовано взаимосвязь между быстродействием и верхним приделом линейного диапазона (ВПЛД) поверхностно-ионизационных (ПИ) детекторов. Выявлено, что с увеличением температуры (Т) ПИ эмиттера быстродействия детектора увеличивается, а наличие ВПЛД детектора обусловлено возникновением пороговой области ПИ молекул, вызванного уменьшением работы выхода эмиттера.

Для изучения закономерности пороговой области ПИ, исследовано ПИ молекул триэтиламина при совместной и раздельной адсорбции с цезием, методом масс-спектрометрий. Выявлено, что уменьшение работы выхода эмиттера влияет не только на температурный порог поверхностной ионизации продуктов химических реакций, но и температурный порог гетерогенных химических реакций молекул приводящего образованию ионизируемых частиц. Придложено математическая, объясняющий возникновения ВПЛД. По этой модели, энергия активации реакции диссоциации молекул, энергия активации десорбции молекул и продуктов химических реакции молекул в ионном и нейтральном состояний линейно зависит от уменьшения работы выхода.

Для изучения зависимости быстродействия детектора от Т ПИ эмиттера регистрировался спектры термодесорбции морфина, героина и папаверина при разных Т ПИ эмиттера. Для изучения зависимости ВПЛД от быстродействия детектора, спектры термодесобции даных веществ получены при их разных массах и быстродействиях детектора. Выявлено, что с увеличением быстродействия детектора ВПЛД детектора увеличивается. Разработано математическая мадель данной зависимости.

ИССЛЕДОВАНИЕ АЛЬБЕДО НЕЙТРОНОВ В КОМПОЗИТНОМ МАТЕРИАЛЕ

А.В. Носков^{1,2)}, В.А. Шуршаков³⁾, В.И. Павленко¹⁾, Н.И. Черкашина¹⁾ , Д.С. Романюк¹⁾

¹⁾Белгородский государственный технологический университет им. В. Г. Шухова, Белгород, Россия

²⁾Белгородский государственный университет, Белгород, Россия ³⁾Институт медико-биологических проблем РАН Москва, Россия

При решении достаточно большого круга задач, связанных с прохождением нейтронов через различные вешества, необходимо учитывать обратно рассеянное нейтронное излучение. Данное явление принято называть альбедо нейтронов, которое является вероятностью отражения нейтронов в результате их многократного рассеяния в веществе. В настоящей работе получено выражение, описывающее альбедо нейтронов в композитном материале. Далее проведены численные расчеты альбедо нейтронов, рассеиваемых в мишени конечной толщины, состоящая из разработанного нами композитного материала на основе полиэтилена и карбида бора с составом: В - 26,1%, С-65,2% и Н-8,7%. Также для сравнения рассматривается чистый полиэтилен с составом: С-86% и Н-14%. Показано, что альбедо нейтронов для композита из полиэтилена и карбида бора существенно превышает альбедо нейтронов из полиэтилена для определенной области толщины мишеней. При увеличении толщины мишени альбедо от полиэтилена начинает превышать альбедо от разработанного композита. Показано увеличение отражательной способности композитов с увеличением толщины мишени, при этом возникает насыщение. Толщина насыщения альбедо увеличивается с увеличением энергии нейтронов.

Работа выполнена в рамках реализации федеральной программы поддержки развития БГТУ им. В. Г. Шухова (программа «Приоритет 2030») и частично поддержано темой Фундаментальные научные исследования РАН № 65.2.

О ВЛИЯНИИ ПАРАМЕТРОВ МИШЕНИ И ЭЛЕКТРОННОГО ПУЧКА НА ДПИ И ПРИ

С. В. Блажевич¹⁾, О. Ю. Шевчук¹⁾, А.Э. Федосеев¹⁾, А.В. Носков^{1,2)}

¹⁾Белгородский государственный университет, Белгород, Россия ²⁾Белгородский государственный технологический университет им. В. Г. Шухова, Белгород, Россия

В работе рассматривается влияние параметров пучка релятивистских электронов и слоистой мишени с периодической структурой на спектрально-угловые характеристики когерентного рентгеновского излучения, возбуждаемого в ней в геометрии рассеяния Брэгга. Когерентное излучение в направлении рассеяния Брэгта рассматривается в виде суммы вкладов параметрического рентгеновского излучения (ПРИ), дифрагированного переходного излучения (ДПИ) и слагаемого, являющегося результатом их интерференции. Проведены численные расчеты спектрально-угловых характеристик излучения для различных значений параметров мишени и электронного пучка. Исследованы соотношения вкладов этих механизмов излучения для различных значений энергий электронов и параметров мишени. Показана возможность использования угловой плотности и полного выхода ДПИ в периодической слоистой мишени для индикации параметров пучков релятивистских электронов.

ОБ ИЗУЧЕНИИ РАДИАЦИОННЫХ ДЕФЕКТОВ МЕТОДОМ EXAFS

В.А. Андрианов^{1)*}, А.Л. Тригуб²⁾

¹⁾НИИЯФ МГУ, Москва, Россия
²⁾ НИЦ «Курчатовский институт», Москва, Россия
*) e-mail: andrya22@mail.ru

Физика радиационных повреждений имеет важное значение при выборе материалов атомных реакторов и при создании новых термоядерных устройств. Для изучения атомных конфигураций первичных радиационных дефектов и их кластеров следует использовать локальные методы, такие как синхротронный метод EXAFS, который позволяет непосредственно определить атомную структуру окружения. Суть метода EXAFS (Extended X-гау Absorption Fine Structure) состоит в измерении поглощения рентгеновских лучей при энергиях превышающих энергию связи электронов в K- или L- оболочках. Здесь коэффициент поглощения имеет осцилляции, которые зависят от расположения окружающих атомов. В результате определяется число атомов в различных координационных сферах и радиусы этих сфер. Измерения могут быть выполнены на любых атомах, входящих в состав исследуемого материала, в зависимости от выбранного атома изменяется лишь диапазон исследуемых энергий.

В докладе представлены данные об имплантации атомов Fe в матрицы Мо и Та /1/. Спектры EXAFS были измерены во флуоресцентном режиме в области энергий К-края Fe. Таким образом, были получены данные о кристаллическом окружении имплантированных атомов Fe. Показано, что в Мо атомы Fe занимают преимущественно позиции замещения, а в Та – как позиции замещения, так и позиции внедрения в виде кластеров Fe-Ta вдоль диагонали <111>. Определена концентрация вакансий в ближайшем окружении атомов Fe. Получены данные об изменении координации атомов Fe при отжиге 700 °C. Рассмотрены вопросы анализа спектров EXAFS.

ЛИТЕРАТУРА

1. V.A. Andrianov, K.A. Bedelbekova, A.L. Trigub, // Vacuum, 2021, V. 193, P. 110521.

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ВЫХОДА НЕЙТРОНОВ И ПРОТОНОВ DD-РЕАКЦИИ ИЗ ТІ и CVD-АЛМАЗА ОТ УГЛА ПОВОРОТА МИШЕНИ

М.А. Негодаев 1 , А.С. Русецкий 1* , К.В. Шпаков 1 , В.Н. Амосов 2 , К.К. Артемьев 2 , С.А. Мещанинов 2 , Д.А. Скопинцев 2

¹Физический Институт им. П.Н. Лебедева РАН, 119991, Москва, Россия ² Частное учреждение «ИТЭР-Центр», 123182, г. Москва, Россия

Исследовалась зависимость выхода DD-нейтронов из Ti и текстурированного CVD-алмаза от угла поворота мишени. Измерения проводились на ионном ускорителе ГЕЛИС при энергии дейтронов 20 — 35 кэВ. Детектирование нейтронов проводилось двумя независимыми методами: пропорциональными счетчиками с наполнением He-3 и сцинтилляционным детектором с кристаллом стильбена. Измерения показали зависимость попавшего на детектор потока нейтронов от ориентации мишени из текстурированного CVD-алмаза в пучке ионов дейтерия (Рис.1). Для изотропных образцов (Ti) подобные эффекты не наблюдались. Возможное объяснение эффекта — это каналирование ионов дейтерия и нейтронов в каналах текстурированного CVD-алмаза.

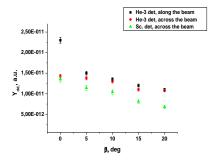


Рис. 1. Зависимость выхода DD-нейтронов от угла поворота алмазной CVD-мишени при энергии 25 кэВ. Данные детектора на основе He-3 вдоль (■) и поперек (●) пучка. Данные сцинтилляционного детектора поперек пучка (▲). При β=0° мишень перпендикулярна пучку.

ПАРАМЕТРИЧЕСКОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ ИЗ МЕТАЛЛИЧЕСКИХ НАНОПОРОШКОВ

В. И. Алексеев¹, А. Н. Елисеев¹, И.А. Кищин^{1),2,*}, А. С. Кубанкин^{1),2}, Е. Ю. Киданова^{1),2}, Р.М. Нажмудинов^{1),2}

1) Физический институт им. П.Н. Лебедева РАН, Москва, Россия
2) Белгородский государственный национальный исследовательский университет, Белгород, Россия

*) e-mail:ivan.kishin@mail.ru

Сообщается о первом наблюдении параметрического рентгеновского излучения релятивистских электронов (ПРИ), возникающего в кристаллическом нанопорошке. ПРИ образовывалось при взаимодействии электронного пучка с энергией 7 МэВ с порошком платины, со средним размером зерен 5 нм. Дополнительно были проведены исследования ПРИ из микронного порошка никеля.

Эксперимент был выполнен в отделе физики высоких энергий ФИАН. ПРИ регистрировалось под углами наблюдения 150 и 180 градусов кремниевыми дрейфовыми детекторами, в диапазоне энергий от 2 до 10 кэВ, где проявляются пики ПРИ. Были зафиксированы пики ПРИ от кристалогафических плоскостей (200), (220), (311), (222), (331) и (420).

Полученные экспериментальные результаты были сопоставлены с кинематической теорией ПРИ, показано хорошее соотношение по положению, формы пиков и относительной интенсивности для наблюдаемых спектров ПРИ.

Работа была выполнена при поддержке гранта Президента РФ для молодых ученых-кандидатов наук МК-1320.2022.1.2.

О ДИНАМИКЕ РАЗВИТИЯ И РЕЗУЛЬТАТАХ ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В ВОДНОЙ СРЕДЕ

А.В. Хлюстова 1* , Н.А. Сироткин $^{1)}$, А.В. Агафонов $^{1)}$, М.А. Степович $^{2)}$, М.Н. Шилко $^{3)}$

 $^{1)}$ Институт химии растворов им. Г.А. Крестова РАН, Иваново, Россия $^{2)}$ Калужский государственный университет им. К.Э. Циолковского, Калуга, Россия

³⁾Ивановский государственный энергетический университет им. В.И. Ленина, Иваново, Россия

*)e-mail: avlada5577@gmail.com

Действие плазмы в водной среде в зоне контакта с электродом вызывает его распыление и образование наноструктур, при этом совместное действие физических и химических факторов позволяет получить новые структуры без примесей остаточных химических реактивов.

В настоящей работе изучена динамика развития и параметры импульсного разряда в водной среде с целью его применения для синтеза новых наноструктур оксидов переходных металлов. Определены электрические характеристики разряда и параметры подводной плазмы, обеспечивающие высокую эффективность синтеза новых наноструктур — оксидов переходных металлов (Ni₂O₃,CrO₃ и др), используемых в промышленности. Показано лимитирующее влияние на процесс их синтеза атомов водорода и активных форм кислорода. Обнаружена возможность использования плазменно-растворных систем для регистрации следов тяжелых металлов в жидких средах.

Исследования проведены при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-03-00271).

ИССЛЕДОВАНИЕ МОНОМОЛЕКУЛЯРНЫХ РАСПАДОВ КОКАИНА МЕТОДОМ ПОВЕРХНОСТНОЙ ИОНИЗАЦИИ

Б.Ш. Касимов^{1*}), Ш.Дж.Ахунов¹⁾, Д.Т. Усманов¹⁾

¹⁾Институт ионно-плазменных и лазерных технологий, АН РУз, Ташкент, Узбекистан

*)e-mail: kasimoy@iplt.uz

В работе исследовано мономолекулярные распады наркотического стимулятора и тропанового алкалоида кокаина методом поверхностно-ионизационной масс-спектрометрии (ПвИ/МС). Тропановые алкалоиды и их производные являются N, N – гетероциклическими соединениями.

Эксперименты по ПвИ/МС проводились с помощью модифицированного для ПвИ исследований статического магнитного масс-спектрометра МИ-1210В, позволяющий анализ мономолекулярных распадов колебательновозбужденных ионов за заданное время. Полученные масс-спектры кокаина состоят из линий квазимолекулярных ионов [M-H] $^+$ и фрагментных ионов [M-R] $^+$ [1]. Фрагментный ион с m/z 182 является основным ионом в масс-спектре кокаина. В масс-спектрах ПИ кокаина наряду с первичными ионами, десорбированных с поверхности эмиттера и "дошедших" до коллектора ионов, обнаружены линии осколочных ионов, образованных в результате распада первичного иона во время их движения в пространстве масс-спектрометра. Определены значения энергии активации \mathcal{E}^* распадов материнского иона [М-H] $^+$. Величины энергии активации \mathcal{E}^* распада за заданное время пропорциональны истинной энергии активации распада или истинной энергии связи в ионе.

ЛИТЕРАТУРА

1. Б.Ш. Касимов, Ш.Дж. Ахунов, Ахмедов Ш. М., Д.Т. Усманов // Тезисы докладов 50-й международной Тулиновской конференции по физике взаимодействия заряженных частиц с кристаллами. Москва, 2021, с. 164.

ВЛИЯНИЕ ИОННОГО ОБЛУЧЕНИЯ НА СТРУКТУРУ, ОПТИЧЕСКИЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОРИСТОГО КРЕМНИЯ

Д.А. Радева * , О.М. Марченко, А.Д. Шпорин, Ю.В. Балакшин, А.П. Евсеев, А.А. Шемухин

Московский государственный университет имени М.В. Ломоносова, Москва, Россия

*) e-mail: da.radeva@physics.msu.ru

Пористый кремний обладает целым рядом необычных свойств, обусловленных малостью поперечного размера его образований, несильно превышающих размеры элементарной ячейки. Это ведет к тому, что в его свойствах в значительной степени проявляются квантовомеханические закономерности.

В настоящее время появляется тенденция использования наночастиц кремния в наноэлектронике и биомедицинских направлениях, чем обусловлена необходимость развития методик, которые дают модифицировать его физические свойства с высокой точностью и повторяемостью результата воздействия, например, с помощью ионно-пучковой инженерии дефектов. Дефекты, образующиеся при ионном облучении, изменяют электронные и оптические свойства материалов, которые впоследствии влияют на такие свойства, как поглощение света, люминесценция, перенос и разделение носителей заряда.

В данной работе исследовано влияние ионного облучения на структуру, оптические и электрофизические свойства пористого кремния. Эксперименты проводились на образцах кристаллического кремния и пористого кремния, приготовленных по технологии электрохимического анодного травления из пластин кремния с ориентацией (111). Исследованы особенности спектров комбинационного рассеяния, проведен расчет значений проводимости.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАДИАЦИОННО-ИНДУЦИРОВАННЫХ ДЕФЕКТОВ НА СТРУКТУРУ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОТРУБОК

А.Д. Шпорин*, О.М. Марченко, Ю.В. Балакшин, А.П. Евсеев, Е.А. Воробьева, А.А. Шемухин

Московский государственный университет имени М.В. Ломоносова, Москва, Россия
*e-mail: shporin.ad16@physics.msu.ru

Ионное облучение энергичными частицами может быть использовано для изменения структуры и свойств многостенных углеродных нанотрубок (МУНТ) путем создания дефектов. МУНТ обладают низким удельным сопротивлением, сопоставимым с проводящими материалами. Во время облучения ионами происходит модифицирование наноструктуры, что существенно влияет на ее проводимость.

В данной работе после облучения ионами образцов прессованных МУНТ изучалась зависимость вольтамперных характеристик от дозы облучения, сделаны выводы об изменении удельной проводимости МУНТ. При помощи спектроскопии комбинационного рассеяния проанализировано разуопрядочивание структуры МУНТ, приводящее к изменению проводимости. Из-за особенностей поверхности МУНТ изменение их проводимости также происходит в присутствии малых концентраций некоторых газов. Это делает возможной разработку чувствительных элементов, сенсоров химических веществ в окружающей газовой среде на основе МУНТ.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-72-10118).

РАСПЫЛЕНИЕ ПОЛУПРОВОДНИКОВ АЗВ5 ГАЗОВЫМИ КЛАСТЕРНЫМИ ИОНАМИ

А.Е. Иешкин^{1*)}, Д.С. Киреев¹⁾, Б.Р. Сенатулин²⁾, Е.А. Скрылева²⁾

Физический факультет МГУ имени М.В. Ломоновсова, Москва, Россия
 НИТУ «МИСиС», Москва, Россия
 *) e-mail: ieshkin@physics.msu.ru

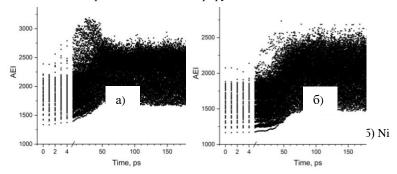
Полупроводники группы A3B5 (GaAs, InP и т. д.) используются в электронике, для излучения/детектирования оптического излучения и во многих других приложениях. Профилирование состава структур на основе таких полупроводников необходимо для повышения производительности устройств и понимания перспектив и применения.

Пучки газовых кластерных ионов (GCIB) широко используются в аналитических методах в качестве первичного пучка или для очистки и профилирования образца. Однако ионным пучкам присущи две общие проблемы, влияющие на качество анализа: селективное распыление и формирование рельефа на поверхности [1]. Понимание физики, лежащей в основе этих процессов, имело бы большое значение как с практической, так и с фундаментальной точки зрения.

В настоящей работе проведен анализ изменения состава поверхности ряда соединений A3B5 при бомбардировке кластерными ионами Ar_n^+ с энергией 20 кэВ (n=1000, 2500). Топография поверхности исследовалась методами ACM и CЭМ. Определены коэффициенты распыления кластерными ионами. Обсуждается влияние параметров кластерных ионов и свойств материала на наблюдаемые эффекты.

Исследование выполнено при поддержке РНФ, проект № 21-79-10224, https://rscf.ru/project/21-79-10224/

ЛИТЕРАТУРА


1. A.E. Ieshkin, D.S. Kireev, A.A. Tatarintsev et al // Surface Science, 2020, 700, 121637.

КИНЕТИКА СТРУКТУРНЫХ ИЗМЕНЕНИЙ ЯНУСОПОДОБНЫХ КЛАСТЕРОВ ПОД ДЕЙСТВИЕМ ЧАСТИЦ Ar₁ И Ar₁₃ УЛЬТРАНИЗКИХ ЭНЕРГИЙ

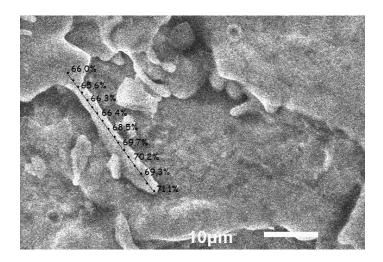
Д.В. Широкорад¹⁾, Г.В. Корнич¹⁾, С.Г. Буга^{2),3)}
¹⁾Национальный университет «Запорожская политехника», Запорожье, Украина

²⁾ФГБНУ "Технологический институт сверхтвердых и новых углеродных материалов", г. Москва, г. Троицк, Россия
³⁾Московский физико-технический институт (ГУ МФТИ),
Московская обл., г. Долгопрудный, Россия

Выполнено МД моделирование янусоподобных кластеров $Ni_{195}Al_{195}$, $Cu_{195}Au_{195}$, $Cu_{195}Bi_{195}$, $Cu_{195}Bi_{195}$, I/ под действием ионов Ar_1 и Ar_{13} с энергиями 25-300 эВ. Изменения атомной структуры кластеров отслеживались параметром AEI (Atomic Equivalence Indexes), а именно, суммой модулей разностей атомных радиус-векторов. На рис.1 видны активные изменения морфологии кластера $Ni_{195}Al_{195}$ за первые 50-70 пс с потерей атомной структуры при его взаимодействии с ионом 25 эВ Ar_{13} . В аналогичных условиях, параметр AEI для кластера $Cu_{195}Au_{195}$ показывает сохранение атомной структуры, тогда как поверхностные слои Bi кластера $Cu_{195}Bi_{195}$ демонстрируют нестабильность.

1. Shyrokorad D.V., Kornich G.V., Buga S.G.// Materials Today Communications, 2020, 23, 101107-12.

ЭВОЛЮЦИЯ ПЕРЕАСПРЕДЕЛЕНИЯ КОМПОНЕНТ СПЛАВОВ В КАТОДНОМ ПЯТНЕ ВАКУУМНОЙ ДУГОВОЙ ПЛАЗМЫ

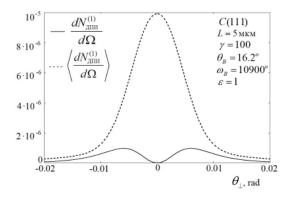

С.В. Гаврилов, А.И. Кудюкин, Е.Н. Моос

Рязанский государственный университет им. С.А. Есенина, Рязань, Россия E-mail: e_moos@mail.ru

В вакуумных дуговых камерах широкое применение нашли электроды на основе двойных сплавов, содержащих легкоплавкую (обычно медь) и тугоплавкую компоненту (обычно хром). Предполагалось, что первая обеспечит достаточный теплоотвод при прохождении килоамперных токов в режиме смыкания и размыкания электродов, в то время как вторая – устойчивость к перегреву вакуумного прерывателя.

В работе представлены результаты исследования изменения состава в катодном пятне разряда методом РФЭС. В частности, обнаружены потоки массопереноса атомов меди (см., например, рисунок) в градиентных тепловых полях от точки взрывного плавления электродов ионами разряда киловольтной энергии. При этом атомы меди уходят в более холодную зону электрода, что изменяет состояние сплава и его локальные свойства

Сделаны оценки градиентных концентрационных профилей вдоль и поперек потоков массопереноса. Развиты подходы по восстановлению исходных пропорций в электродных сплавах. Предложена модель развития дугового разряда с учетом обнаруженных закономерностей, а также концентрационные изменения состояния поверхности электродов из-за адсорбированных слоев молекул остаточной атмосферы и атомов, сегрегирующихся из объема.



ВЛИЯНИЕ МНОГОКРАТНОГО РАССЕЯНИЯ НА ДИФРАГИРОВАННОЕ ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ

С. В. Блажевич¹⁾, А.В. Носков^{1,2}, А.Э. Федосеев¹⁾

¹⁾Белгородский государственный университет, Белгород, Россия ²⁾Белгородский государственный технологический университет им. В. Г. Шухова, Белгород, Россия

В работе развита теория дифрагированного переходного излучения, генерируемого релятивистским электроном в монокристаллической пластине в геометрии рассеяния Брэгга, с учетом многократного рассеяния. Получены выражения для угловой плотности ДПИ. На рисунке представлены кривые, описывающие, угловую плотность ДПИ с учетом (пунктирная кривая) и без учета (сплошная) многократного рассеяния электрона для указанных значений параметров. Рисунок демонстрирует значительный рост угловой плотности ДПИ при включении в расчет многократного рассеяния электронов. Данный эффект связан с подавлением составляющей поля переходного излучения, которая формируется при движении электрона в веществе мишени. Эффект отсутствует при ультрарелятивистских энергиях электронов и становится значительным при понижении энергии электрона (Лоренц-фактор у ≤ 100).

ABOUT CALIBRATION OF DARK MATTER AND NEUTRINO DETECTORS BY REMOTE CONTROLLED NEUTRON SOURCE

A.V. Shchagin

Kharkov Institute of Physics and Technology, Kharkov, Ukraine Belgorod National Research University, Belgorod, Russia e-mail: shchagin@kipt.kharkov.ua

At a calibration of dark matter or neutrino detectors /1/, an AmBe source of neutrons is usually temporary introduced into a scintillator of the detector for production of recoil nuclei /2/. Such sources usually consist of mixture of powders of ²⁴¹Am µ Be and emit neutrons continuously. A pyroelectric neutron source for calibration of the detectors has been proposed in /3/.

Here, we propose remote controlled neutron source. A layer of isotope source of alpha particles, for instance ²⁴¹Am, is deposited on the surface of a substrate. A separate plate is produced of low-zeta element, for instance Be. The neutron source is turned on when the surfaces of Am and Be approach each other. The neutron source is turned off when the surfaces are separated in space. Besides, remote control is possible inserting a thin absorbing alpha particles plate between immovable surfaces of Am and Be. Such remotely controlled neutron source can be permanently installed in the scintillator and switched on remotely for calibration of the detector as needed.

ЛИТЕРАТУРА

- 1. A.E. Bondar et al. // Vestnik of NSU: Physics Series 2013, 8, 27 (in Russian).
- 2. P. Agnes et al., (DarkSide Collaboration) // JINST 2017, 12, T12004.
- 3. A.S. Chepurnov et al. // Journal of Physics: Conference Series 2016, 675, 032031.

УГЛЕРОДНЫЕ НАНОТРУБКИ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Е.А. Воробьева $^{1,2)*}$, Н.А. Иванова $^{2)}$, Д.Д. Спасов $^{2)}$, С.М. Никитин $^{1,2)}$, Н.Г. Чеченин $^{1)}$

- 1) Московский государственный университет имени М.В. Ломоносова, Москва. Россия
- ²⁾ Национальный исследовательский центр «Курчатовский институт», Москва, Россия

*e-mail: vorkate89@mail.ru

В работе было предложено использование вместо аморфного углеродамассива углеродных нанотрубок в качестве носителя катализаторов для топливных элементов. Массив из углеродных нанотрубок имеет развитую поверхность, что должно способствовать осаждению нанометровых размеров частиц платины и предупреждению ее агломерации, тем самым снизив загрузку дорогостоящим катализатором и повысив эффективность его действия.

Методом магнетронного напыления был нанесен катализатор на выбранную в результате экспериментов углеродную ткань марки ELAT (гидрофобная, без подслоя). На данных подложках был реализован синтез углеродных нанотрубок с помощью метода пиролитического газофазного осаждения. Определено, что распределение диаметров синтезированных нанотрубок коррелирует с размерами частиц осажденного катализатора и практически повторяет его по форме. Подобрано время напыления во избежание агломерирования частиц. Предложен метод послойного нанесения катализатора на синтезированный массив нанотрубок для увеличения толщины микропористого слоя.

Ионное облучение может быть использовано для изменения структуры и свойств многостенных углеродных нанотрубок (МУНТ) путем создания дефектов, в том числе для изменения смачиваемости поверхности массива УНТ, что критически важно для твердополимерных топливных элементов.

В сравнении со стандартным аморфным углеродным носителем УНТ позволили достичь улучшения эффективности работы мембранно-электродного блока на 20 %.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 20-08-00927.