ВЛИЯНИЕ ФЛЮЕНСА ЭЛЕКТРОНОВ НА КОНЦЕНТРАЦИЮ ЦЕНТРОВ ОКРАСКИ В ПОЛЫХ ЧАСТИЦАХ ОКСИДА АЛЮМИНИЯ

<u>Юрина В.Ю. (viktoriay-09@mail.ru)</u>, Дудин А.Н., Нещименко В.В., Михайлов М.М.

51-Я МЕЖДУНАРОДНАЯ ТУЛИНОВСКАЯ КОНФЕРЕНЦИЯ ПО ФИЗИКЕ ВЗАИМОДЕЙСТВИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ С КРИСТАЛЛАМИ, МГУ ИМ. М. В. ЛОМОНОСОВА, 24 – 26 МАЯ 2022 Г.

Актуальность

Для поддержания постоянной температуры космического аппарата необходимо:

 $Q_{\text{погл}} = Q_{\text{изл}}$ $T_{\text{KA}} = (a_{\text{s}}/\epsilon)^{\frac{1}{4}} (S_{\text{погл}} \sigma/S_{\text{изл}} Q_{\text{пад}})^{\frac{1}{4}}$

е – интегральная полусферическая излучательная способность;

а, – интегральный коэффициент поглощения солнечного излучения.

Следовательно, значения *a_s* и є для материалов космического аппарата должны иметь малые изменения во времени при орбитальном полете.

Актуальность

Улучшение радиационной стойкости покрытий на основе полых частиц (микросфер) может быть связано с тем, что объемные радиационные дефекты будут возникать с меньшей вероятностью, а поверхностные дефекты будут рекомбинировать в тонком слое микросферы.

Метод приготовления PS

Метод приготовления полых частиц Al₂O₃

Методика эксперимента

1 – образец; 2 – защитный экран; 3 – сфера; 4 – клиновая линза; 5 – азотный экран; 6 – датчик РОМС-1; 7 – загрузочный люк; 8 – датчик ПМИ-27; 9 – люминесцирующие флажки; 10 – отклоняющие катушки; 11 - фокусирующая катушка; 12 – электронная пушка; 13 – сублимационный титановый насос; 14 – осветитель на лампе ДКСР-3000; 15 – магнитный масс-сепаратор; 16 – источник ионного тока; 17 – смотровое кварцевое окно; 18 – блок осветителя для измерения отражения; 19 – баллон "охранного вакуума"; 20 – форвакуумный насос; 21 – сорбционная ловушка; 22 – цеолитовый насос; 23 – кран ДУ-10; 24 – насос НМДО-025-1; 25 – поворотная диафрагма; 26 – поворотный столик; 27 – нижний столиктермостат; 28 – магнитный привод.

Амурский Государственный Университет

Методика эксперимента

Спектры диффузного отражения микрочастицы (1), наночастицы (2), микросфер (3), субмикросфер (4) частиц Al₂O₃ Таблица 1 – Интегральный коэффициент поглощения солнечного излучения (a_{s0}) оксида алюминия

Тип частицы	a _{s0}
микрочастицы Al ₂ O ₃	0.013
наночастицы Al ₂ O ₃	0.031
микросферы Al ₂ O ₃	0.052
субмикросферы Al ₂ O ₃	0.286
Согласно стандарту	0.2

Стандарт для солнечных отражающих покрытий **a**_s < **0.2**, **по Международному стандарту** ISO 16691:2014

Разностные спектры диффузного отражения микрочастиц (а), микросфер (б), наночастиц (в) Al₂O₃ после облучения электронами с энергией 30 кэВ с флюенсом 0.5 (1), 1 (2), 2 (3), 3(4), 5(5), 7(6)х10¹⁶см⁻² измеренные на месте

Зависимость площади основных полос дефектов микрочастиц, наночастиц и микросфер оксида алюминия: (a) – 4,84 эВ (Al_i*), (б) – 4,44 эВ (O_i'), (в) – 3,96 эВ (V₀**), (г) – 3,57 эВ (V_{Al}') от флюенса электронов (1, 2, 3, 5, 7·10¹⁶ см⁻²) с энергией 30 кэВ

Изменение интегрального коэффициента поглощения солнечного излучения от флюенса электронов с энергией 30 кэВ (а), и от времени выдержки в вакууме и на воздухе после облучения электронами (б)

Формирование центров поглощения во фрагменте полой частицы оксида алюминия при воздействии ионизирующих излучений

- Установлено, что радиационная стойкость микросфер оксида алюминия к воздействию электронов энергией 30 кэВ флюенсом от 1 до 7[•]10¹⁶ см⁻² по сравнению с радиационной стойкостью микрочастиц и наночастиц оксида алюминия больше на 19 % и 15 %.
- Увеличение радиационной стойкости полых частиц микронных размеров оксида алюминия по сравнению с радиационной стойкостью объемных микрочастиц обусловлено малой концентрацией индуцированных дефектов анионной подрешетки O_i^{''}, O_i['], O_i^x, V₀^{''}, V₀^x.

Спасибо за внимание!

