ВЛИЯНИЕ МОЗАИЧНОСТИ КРИСТАЛЛОВ НА ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ БЫСТРЫХ ЭЛЕКТРОНОВ

И.Е. Внуков, В.В. Колодочкин, А.С. Склярова, Шаблов Ю.С.

НИУ «БелГУ», Белгород, Россия

Аннотация

Для определения физической причины подавления выхода жесткой компоненты излучения ($\omega = 800 \text{ M}\Rightarrow\text{B}$) при движении электронов с энергией 890 МэВ под малыми углами к плоскости (002) мозаичного кристалла пиролитического графита проведена обработка результатов цикла измерений ориентационных зависимостей выхода мягкой компоненты излучения ($\omega \leq 10\text{-}15 \text{ M}\Rightarrow\text{B}$) и полной энергии излучения генерируемой электронами с энергией 890 МэВ и 850 МэВ в мозаичных кристаллах пиролитического графита для нескольких углов наблюдения. Обнаружено увеличение выхода излучения в направлении плоскости кристалла, не объясняемое теорией многократного рассеяния. Обсуждаются возможные причины и способы применения наблюдаемых эффектов.

В эксперименте /1/ было обнаружено тридцати процентное подавление интенсивности жесткой компоненты коллимированного изучения ($\theta = 0.6$ мрад) при движении электронов с энергией 890 МэВ под малыми углами к кристаллографической плоскости (002) мозаичного кристалла пиролитического графита (см. рис. 1).

Рис. 1: ОЗ коллимированного излучения /1/. Е= 890 МэВ, $\vartheta_c = 0.6$ мрад, $\sigma_m \sim 3$ мрад. 1-полный выход излучения, 2 - $\omega = 800$ МэВ, 3 - $\omega \leq 10$ -15 МэВ

Из представленных на рисунке ориентационных зависимостей (O3) выхода излучения хорошо видно, что для движения электронов под малыми углами к плоскости, о чем свидетельствует максимум выхода мягкой компоненты излучения, обусловленного излучением при плоскостном каналировании электронов, (кривая 3), наблюдается подавление выхода жесткой компоненты и полной энергии излучения. Необходимо подчеркнуть, что кристаллах с более совершенной структурой этого никогда не наблюдалось. Для определения причины наблюдаемого эффекта на Томском синхротроне был проведен цикл измерений зависимости выхода мягкой компоненты и полной энергии коллимированного излучения для нескольких углов относительно направления электронного пучка, падающего на кристалл. Схема измерений приведена на рисунке 2.

Рис. 2: Схема эксперимента. ПГ - пиролитический графит, ИК - ионизационная камера, К - конвертор, NaI - детектор для регистрации мягкой компоненты излучения, Q - квантометр

Ускоренные электроны проходили через кристалла графита, установленный в гониометре, и сбрасывались на стенки ускорительной камеры синхротрона. Плоскость (002) установлена вертикально с погрешностью не хуже нескольких градусов. Мягкая компонента излучения регистрировалась цилиндрической ионизационной камерой с размерами Ø 4 мм и длиной 200 мм, установленной на расстоянии 4.5 м от кристалла. Полная интенсивность излучения регистрировалась квантометром, перед которым устанавливалась защита из свинца толщиной 10 см с вертикальной щелью шириной 6 мм. Для измерения выхода излучения под углом к направлению электронов камера и щелевой коллиматор перед квантометром перемещались относительно направления электронного пучка в перпендикулярной плоскости на требуемое расстояние.

Для отчета углов разориентации плоскости относительно направления электронного пучка использовалось излучение при плоскостном каналировании электронов регистрируемое по увеличению выхода комптоновских фотонов в одном случае и конвертора (K), установленного на пучке излучения, и фотонов ХРИ свинца из узкой пластинки толщиной 0.4 мм и шириной 5 мм в другом с помощью детекторов NaI толщиной 63 мм и 1 мм, соответственно. Регистрация комптоновских фотонов использовалась в эксперименте по измерению мягкой компоненты излучения, а фотонов ХРИ при исследовании выхода полной энергии коллимированного излучения.

Угол коллимации мягкой компоненты излучения в направлении перпендикулярном плоскости (002) составлял ~ 0.5 мрад. Коллимация излучения вдоль плоскости (002) практически отсутствовала. Использовались мишени толщиной 6 мм и 4.5 мм вдоль направления электронного пучка с мозаичностью $\sigma \sim 4$ мрад. Методика измерений мягкой компоненты излучения с помощью прутковой ионизационной камеры совпадает с приведенной в /2/.

Измерения показали, что как и для кристаллов с малой мозаичностью (см., например /2/) положение максимумов в O3 выхода мягкой компоненты совпадает с углом расположения камеры относительно направления электронного пучка, то есть максимумы обусловлены излучением при движении электронов по малыми углами к плоскостям микроблоков кристалла, распределенных около основного направления (здесь и далее направление плоскости кристалла) по нормальному распределению. Тогда как зависимость амплитуд этих максимумов от угла наблюдения, приведенная на рисунке 3 (кружки) в отличии от результатов /2/ не совпадает с оценками по теории многократного рассеяния.

Рис. 3: Зависимость выхода излучения от угла наблюдения.
о - плоскость, • - разориентированный кристалл,
 \bigtriangleup - $(J_{pl}\text{-}J_r)/J_r$

Рельефность ОЗ (отношение пик/подложка - треугольники) остается практически постоянной вплоть до угла наблюдения ≈2.5 мрад, а затем растет с увеличением угла наблюдения. То есть для больших углов наблюдения вдоль направления плоскости движется больше электронов, чем в разориентированном кристалле и как это следует из теории многократного рассеяния электронов в веществе.

Измерения ОЗ полной энергии коллимированного излучения (рисунок 4, кривая 1) показали, что здесь тоже наблюдаются максимумы, положение которых совпадает с углом наблюдения. В данном случае речь идет не об излучении при каналировании, а об увеличении числа электронов, движущихся в кристалле под малыми углами к плоскости кристалла. Для угла наблюдения 5 мрад (~ 2σ , где σ среднеквадратичный угол много-кратного рассеяния электронов в кристалле графита) при повороте плоскости на детектор выход излучения по сравнению с разориентированным кристаллом увеличился в почти два раза.

Рис. 4: Измерения полной энергии излучения с составной мишенью. θ =5±0.4 мрад. 1 - графит, 2 - свинец (0.4 мм) + графит, 3 - графит + свинец (0.4 мм)

Для проверки вывода о "фокусировке" части электронов вдоль преимущественного направления плоскостей мозаичного кристалла мы провели измерения с составными мишенями свинец+графит, графит+свинец и сравнили результаты с ОЗ для графита без дополнительного радиатора для угла наблюдения 5 мрад. Если увеличение интенсивности связано исключительно с излучением в кристалле, то свинцовый радиатор должен только увеличить подложку ОЗ, а интенсивность в пике может только упасть из-за поглощения в случае мишени графит-свинец и уменьшения доли электронов движущихся под малыми углами к плоскостям для мишени свинец-графит. Измерения показали, что использование радиатора увеличило интенсивность в пике ОЗ более чем в три раза для мишени графит+свинец и в два раза для мишени свинец+графит. Ясно, что для мишени графитсвинец рост интенсивности излучения обусловлен увеличением количества электронов, двигающихся в свинце в направлении на детектор при совпадении угла наблюдения с направлением плоскости кристалла примерно в полтора раза. Для мишени свинец-графит увеличение выхода излучения происходит непосредственно в графите и может быть объяснено только увеличением количества электронов двигающихся в кристалле под малыми углами к направлению плоскости кристалла примерно в дви раза.

Заключение

Рассеяние электронов около плоскостной ориентации мозаичных кристаллов не описывается теорией многократного рассеяния. На малых толщинах электроны испытывают повышенное рассеивание притягиваясь к плоскостям микроблоков кристалла (преломляясь на них), поэтому в направлении прямо-вперед интенсивность излучения существенно снижена. Для углов многократного рассеяния сопоставимых с характерным углом мозаичности этот же эффект срабатывает в обратную сторону. Электроны группируются около основного направления блоков мозаики. Для углов многократного рассеивания существенно превышающих мозаичность кристалла возможен эффект "эффективного" подавления многократного рассеивания, а, следовательно, увеличения угловой плотности тормозного излучения.

ЛИТЕРАТУРА

- 1. Amosov C.Yu., Kalinin B.N., Naumenko G.A. et al.// NIM B 119 (1996), p. 103.
- Амосов К.Ю.. Андреяшкин М.Ю., Внуков И.Е. и др.// Изв. ВУЗов, Физика, 1991, N 6., с. 70.