Влияние плотности каскадов на накопление радиационных повреждений в α-Ga₂O₃

А.И. Титов¹⁾, К.В. Карабешкин¹⁾, <u>А.И. Стручков*¹⁾, П.А. Карасев¹⁾, А.Ю. Азаров²⁾, Д.С. Гогова³⁾</u>

¹⁾Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия ²⁾Университет Осло, Осло, Норвегия ³⁾Болгарская академия наук, София, Болгария

*andrei.struchckov@yandex.ru

Проведено исследование накопления радиационных повреждений в эпитаксиальных слоях оксида галлия альфа фазы (α-Ga₂O₃) при облучении атомарными ионами Р 40 кэВ и молекулярными ионами PF₄ 140 кэВ до различных доз и при различных плотностях тока. Показано, что результирующее разупорядочение существенно изменяется как при переходе от атомарных ионов к молекулярным, так и при изменении плотности тока.

Введение и детали эксперимента

многообещающим Оксид является весьма галлия полупроводником для использования в приборах высокой мощности и оптоэлектронике. Хорошо известно, что имплантация сопровождается образованием в мишени всегда ИОНОВ радиационных дефектов, причем эффективность их накопления может в большой мере зависеть от плотности каскадов столкновений [1].

Эпитаксиальные слои α -Ga₂O₃ облучались пучками ионов P и PF₄ до различных доз и при различной плотности тока. Имплантация осуществлялась при комнатной температуре имплантером 500 kV HVEE под углом 7° от направления [0001] для минимизации эффектов каналирования. Энергия ионов – 1.3 кэB/а.е.м. (40 и 140 кэB для P и PF₄, соответственно). Дозы приведены в DPA – среднем числе смещений на атом на глубине максимума упругих потерь энергии. Величины DPA вычислены кодом TRIM [2]. Разупорядочение измерялось методом RBS/C. Использованные плотности тока указаны в таблице 1.

Ион	Плотность тока, 10 ⁻³ ДПА/с	Плотность тока, мкА/см ²
Ρ	0.0793	0.00796
Ρ	2.41	0.242
Ρ	4.38	0.44
PF ₄	0.0793	0.0025
PF ₄	2.41	0.076
PF ₄	4.38	0.138

Таблица 1. Ионы и соответствующие их пучкам плотности тока, использованные в эксперименте.

Результаты и обсуждение

Рис. 2. Профили относительного разупорядочения α -Ga₂O₃ после облучения ионами (а) Р 40 кэВ (b) PF₄ 140 кэВ до указанных доз.

Рис. 3. Зависимость коэффициента молекулярного эффекта от дозы облучения, полученная исходя из толщин разупорядоченных слоев на рис. 2.

Row Numbers

Рис. 1. Спектры RBS/C после облучения α-Ga₂O₃ ионами Р 40 кэВ с плотностью тока 0.242 мкА/см² до указанных в легенде доз.

Можно отметить, что распределение дефектов является бимодальным, с максимумами на поверхности и в объеме.

Рис. 4. Профили относительного разупорядочения α-Ga₂O₃ после облучения ионами (а) Р 40 кэВ (b) PF₄ 140 кэВ до дозы 0.441 ДПА при указанных плотностях тока (в 10⁻³ ДПА/с).

Заключение

Характер радиационных повреждений в α-Ga₂O₃ носит бимодальный характер – с образованием поверхностного и объемного пиков повреждений. Последний растет вплоть до уровня насыщения и смещен вглубь по сравнению с максимумом генерации первичных дефектов. Такой характер дефектообразования сравним с таковым в GaN.

У Обнаружен молекулярный эффект, проявляющийся в усиленном образовании поверхностного разупорядоченного слоя при облучении α-Ga₂O₃ молекулярными ионами по сравнению с атомарными.

У Показано, что накопление повреждений в α-Ga₂O₃ зависит от плотности тока, причем в рамках рассмотренных плотностей эта зависимость обратная – при большей плотности обнаружены меньшие повреждения.

S.O. Kucheyev, et al. // J. Phys. D, 2009, 42, 085309.
Ziegler J.F., SRIM-2013 software package, available online at <u>http://www.srim.org</u>.