Состав, структура и внутренние напряжения в многослойных пленках нк-ZrN/a-ZrCu, облученных ионами гелия и криптона

В.В. Углов¹, С.В. Злоцкий¹, Г. Абади², И.С. Веремей¹, А.Е. Рысқұлов³, Л.А. Козловский³, М.В. Здоровец³

> ¹Белорусский государственный университет, Минск, Беларусь ²Университет Пуатье, Пуатье, Франция ³Институт ядерной физики МЭ РК, Нур-Султан, Казахстан

51-я Международная Тулиновская конференция по Физике Взаимодействия Заряженных Частиц с Кристаллами, Москва, МГУ им М.В. Ломоносова, 24-26 мая 2022 г.

Введение

В время разработка новых радиационно-стойких настоящее материалов является актуальной проблемой, особенно актуальной для ядерной/термоядерной промышленности, аэрокосмической техники и т. д., где объекты подвергаются сильному облучению ионами, нейтронами, электронами. Многослойные системы перспективны для исследований, поскольку межслоевые границы могут влиять на удаление радиационных дефектов. Они имеют значительные межфазные области, которые могут выступать в качестве устойчивых стоков дефектов. Нанокристаллические покрытия с интерфейсом кристалл/аморфный (например, системы nc-MeN/a-Si₃N₄) обладают высокой радиационной устойчивостью наряду с кристаллическими/кристаллическими системами [1-2]. В данной работе предложена идея замены аморфных слоев a-Si₃N₄ аморфными металлическими слоями a-ZrCu для многослойных радиационно-стойких кристаллических/аморфных пленок.

Экспериментальная часть

Осаждение

(реактивный несбалансированный - Базовое давление: p₀ ≤ 6 ·10⁻⁶ Па магнетрон)

Облучение

(ДЦ-60 ускоритель тяжелых ионов)

He²⁺ (40 кэВ) и Kr¹⁴⁺ (280 кэВ) ионы, дозы: до 2·10¹⁷ см⁻² (Не) и до 5·10¹⁶ см⁻² (Kr), КТ ZrN(5 нм)/ZrCu(5 нм) (С_{си}=52.3 ат.%) *R*₀ = 153 нм

- Температура подложки: 300°С

- Потенциал на подложке : -60 В

- Рабочее давление Ar : 0,20 Па

- Две отдельных мишени: Zr, Cu

- Расстояние до подложки: d =18 см

- Zr, Cu: постоянный ток

- Ar+N₂ плазма

- Толщина пленки: ~300 нм

отн.ед.

Интенсивность

a-ZrCu Cu - Концентрация слое В путем изменения тока варьировалось медной мишени от 40 до 52 Вт и источника тока циркониевой мишени от 45 до 294 Вт.

- Концентрация Си изменяется в a-ZrCu от 44,6 до 73,8 ат.% (сдвиг центра тяжести аморфного пика);
- Формирование кубических ZrN и аморфных (Zr,Cu) слоев;
- Толщина аморфного слоя и концентрация Си не влияют на параметр решетки слоев ZrN.

Концентрация Cu, ат.%	Напряжения, ГПа					
	Необлученные		Облученные ионами Не (40 кэВ, 2х10 ¹⁷ см ⁻²)		Облученные ионами Kr (280 кэВ, 5х10 ¹⁵ см⁻²)	
	ZrN(5 нм)/	ZrN(5 нм)/	ZrN(5 нм)/	ZrN(5 нм)/	ZrN(5 нм)/	ZrN(5 нм)/
	ZrCu(5 нм)	ZrCu(10 нм)	ZrCu(5 нм)	ZrCu(10 нм)	ZrCu(5 нм)	ZrCu(10 нм)
44,6	-1,26	-3,16	-1,32	-3,72	-1,18	-3,28
73,8	-2,08	-2,59	-1,70	-1,43	-1,9	-1,1

• Для толщины аморфного слоя 10 нм изменения параметра решетки больше, чем для слоя 5 нм;

Фазовый состав пленок нк-ZrN/a-ZrCu

после облучения ионами Kr

- Облучение пленки С_{си}=73,8 ат.% приводит к уменьшению параметра решетки;
- Кристаллизация металлической фазы Cu в аморфной пленке (при C_{Cu}=73,8 ат.%).

- Стабильность фазового состава;
- Облучение приводит к росту параметра решетки при дозе 5х10¹⁴ см⁻² – дефектообразование;
- Дальнейшее увеличение дозы облучения снижение параметра решетки – релаксация напряжений.
- Для толщины аморфного слоя 10 нм изменения параметра решетки больше, чем для слоя 5 нм.
- Стабильность фазового состава;
- Облучение пленки с толщиной аморфного слоя 5 нм приводит к небольшому росту параметра СМ⁻² 5x10¹⁴ при дозе решетки дефектообразование;

Напряжения в пленках нк-ZrN/a-ZrCu

- Увеличение уровня сжимающих напряжений с повышением толщины аморфного слоя;
- Облучение ионами Не рост уровня сжимающих напряжений для С_{си}=44,6 ат.% и уменьшение для С_{си}=73,8 ат.%;
- Облучение ионами Kr уменьшение уровня сжимающих напряжений.

- Дальнейшее увеличение дозы облучения – снижение параметра решетки – релаксация напряжений.
- Для толщины аморфного слоя 10 нм облучение приводит к уменьшению параметра решетки.

Uglov@bsu.by

Выводы

- Методом магнетронного распыления сформированы многослойные пленки нк-ZrN/a-ZrCu с различной толщиной элементарных слоев и концентрацией меди в слоях ZrCu. Пленки состоят из чередующихся кристаллических (кубических) слоев ZrN и аморфных слоев ZrCu.
- Установлена устойчивость фазового состава многослойных пленок нк-ZrN/a-ZrCu к облучению ионами He (до 2×10^{17} см⁻²) и Kr (до 5×10^{15} см⁻²).
- Обнаружено формирование сжимающих напряжений в кристаллических слоях многослойных пленок. Выявлено влияние толщины и концентрации меди в аморфном слое на уровень сжимающих напряжений.
- Выявлено, что облучение ионами Не и Кг приводит к изменению уровня сжимающих напряжений. При этом для малой концентрации Си выявлен рост уровня сжимающих напряжений, а для большой концентрации Cu – уменьшение.

Литература

[1] V.V. Uglov, G. Abadias et al. / Sur. Coat. Technol., vol. 344, pp.170-176, 2018. [2] V.V. Uglov, N. T. Kvasov et al. / Nucl. Instr. Meth. Phys. Res., vol. 435, pp. 228-235, 2018.

Белорусский государственный университет, Минск, Беларусь