

Изменение свойств бета-Ga₂O₃ под действием имплантации 10-24-34 ионов Si⁺

nikolskaya@nifti.unn.ru +7(962)-510-24-34

<u>А.А. Никольская</u>, Д.С. Королев, А.Н. Михайлов, А.И. Белов, А.В. Кудрин, А.В. Нежданов, В.Н. Трушин, Е.А. Питиримова, Д.А. Павлов, Д.Е. Николичев, Р. Н. Крюков, Д.И. Тетельбаум

Аннотация

Оксид галлия и его наиболее стабильная бэта-модификация (β -Ga $_2$ O $_3$) — широкозонный полупроводник ($E_g\approx 5$ эВ), наиболее перспективный для нового поколения целого ряда важнейших областей электронной техники — силовая электроника, термостабильные газовые сенсоры кислорода и водорода, детекторы ультрафиолетового излучения и др. Однако, разработка физических основ метода ионной имплантации для этого материала находится в начальной стадии. Наша работа посвящена исследованию ключевых для физики ионной имплантации процессов — разупорядочение структуры и связанной с этим эффективности ионного легирования при облучении и последующем отжиге монокристаллов β -Ga $_2$ O $_3$ ионами донорной примеси — Si. Установлены не характерные для «традиционных» полупроводников факты: сильная зависимость указанных факторов от ориентации поверхности и немонотонная зависимость эффективности (электрических свойств) от дозы облучения. Предложен вариант объяснения этих особенностей. Впервые установлена возможность создания путем ионного легирования кремнием слоя *p-muna*. Получение *p-muna* является одной из важнейших и трудно разрешаемых для Ga $_2$ O $_3$ задач.

Методика эксперимента Схема проведения эксперимента Ga Si*(100 кэВ, 1·10¹⁴ - 1·10¹⁶ см⁻²) Последовательный отжиг: 600 – 950 °С в N₂, 30 мин каждый шаг β-Ga₂O₃ β-Ga₂O₃ Fe-doped Fe-doped

(a) Unit cell Puc. 1. Элементарная ячейка β -Ga₂O₃ с обозначенными ориентациями (-201) и (010)

Результаты и обсуждение

Исследование структуры [1]

После имплантации (без отжига) механические напряжения облученного слоя определенные методом XRD (рис. 2) имеют разный знак: сжатие для ориентации (-201) и растяжение для (010).

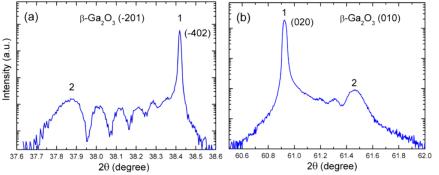


Рис. 2. Дифрактограммы β -Ga₂O₃ с ориентациями (-201) (a) и (010) (b), облученный ионами Si⁺ с дозой $4\cdot 10^{14}$ см⁻² , без отжига.

По мере отжига напряжения уменьшаются, а их знаки становятся одинаковыми (таблица 1).

Таблица 1. Изменение напряжений с температурой отжига.

Температура отжига, °С	Образец	Напряжение, ГПа
-	-201	9.91
	010	-5.92
600	-201	1.61
	010	1.14
750	-201	0.50
	010	0.67
850	-201	0.56
	010	1.36
950	-201	-
	010	0.25

Стветень структурного разупорядочения при ионном облучении, определенная с помощью XRD, электронографии и оптической спектроскопии, монотонно увеличивается с ростом дозы и снижается в результате отжига. Причем для ориентации (010) она выше, чем для (-201). Такое различие объясняется, по-видимому, различными условиями для миграции и поверхностной сегрегации точечных дефектов из-за сильной анизотропии атомной структуры моноклинной фазы β -Ga₂O₃, в частности, наличия широких открытых каналов направленных вдоль оси [010] (рис. 1).

4 Благодарности

Работа выполнена при поддержке РФФИ (грант № 19-57-80011).). Никольская А.А. признательна за поддержку в рамках Стипендии Президента РФ (СП-1894.2021.5).

Электрические характеристики образцов

Зависимость степени электрической активации имплантированных атомов Si ученью от дозы изучалась методом измерения эффекта Холла и имеет аномальных характер. Близкая к 100 % активация была выявлена только для ориентации (-201) при дозе облучения 4·10¹⁴ см⁻² (рис. 3), а для ориентации (010) степень активации оказалась не выше 5% для всех использованных доз.

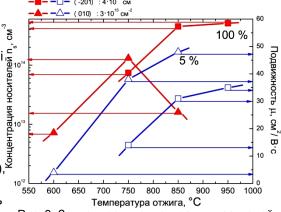


Рис. 3. Зависимость концентрации носителей заряда (левая шкала, красные кривые) и подвижности (правая шкала, синие кривые) от температуры отжига.

B-Ga₂O₃: Si^{*} (100 keV, 4x10¹⁴ cm⁻²)

SRIM Si
SIMS: (-201)
SIMS: (-201) + FA950
SIMS: (010) + FA950
SIMS: (010) + FA950
Depth (nm)

Рис. 4. Распределение ионов Si⁺ в β -Ga $_2$ O $_3$ до и после отжига. Также приведено расчетное распределение ионов.

По данным вторично-ионной масс-спектрометрии (рис. 4), что после отжига для ориентации (-201) происходит небольшое расплывание профиля кремния, ориентации (010) происходит существенная сегрегация атомов легирующей примеси к поверхности. Исходя из этих данных понятно, что активация примеси для ориентации (010) не происходит по причине аутдиффузии ионов кремния из образца.

Важным результатом является наличие *проводимости р-типа*, наблюдаемое для образца (-201) при дозе $3\cdot10^{15}$ см⁻² и температуре отжига 600° C: создание р-типа — одна из *главных и труднодостижимых*

Зависимость проводимости р-слоя от температуры измерения (рис. 5) выявила наличие двух энергий активации (0.517 и 0.182 эВ), предположительно связанных с прыжковой проводимостью дырок по локализованным и нелокализованным состояниям, соответственно.

задач!

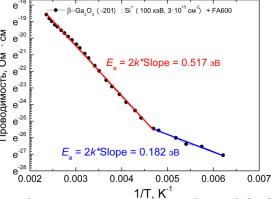


Рис. 5. Зависимость проводимости образца β -Ga $_2$ O $_3$ облученного с дозой $3\cdot 10^{15}$ см $^{-2}$ и отожженного при 600° C от температуры измерения.

Однако, в результате длительного хранения на воздухе, а также при дальнейшем отжиге при более высоких температурах p-слой переходит в n-тип.

Таким образом, проблема ионного легирования кремнием β -Ga $_2$ O $_3$ не тривиальна и требует дальнейших исследований. Требуется также найти пути стабилизации дырочной проводимости и ее повышения.