

ОСОБЕННОСТИ КАНАЛИРОВАНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В КРИСТАЛЛАХ С ГЕКСАГОНАЛЬНОЙ СТРУКТУРОЙ

Н.В. Максюта, В.И. Высоцкий, С.В. Ефименко КНУ имени Тараса Шевченко, Киев, Украина

Целью работы является анализ методов оптимизации источников интенсивного коротковолнового излучения на основе явления плоскостного каналирования слаборелятивистских электронов (например, с Лоренцфактором $\gamma = 20$) в кристаллах с гексагональной плотноупакованной структурой (в частности, в кристаллах Be, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, La, геометрические и физические параметры для которых брались из [1]). В данной работе, на ряду с другими задачами, изучалось каналированное движение электронов в базисных плоскостях (например, в плоскостях, параллельных плоскости (0001), отмеченной на рис. 1а цифрой 1) и призматических плоскостях (например, в плоскости (1100), отмеченной на рис. 1а цифрой 2). Следует отметить, что для проведения расчетов в кристаллах гексагональной решеткой удобно пользоваться с четырехсимвольными индексами Миллера – Бравэ (hkil) [2], где i – дополнительный индекс (при этом выполняется соотношение h + k + i = 0). В работе также исследовались особенности спонтанного излучения при осевом каналировании электронов.

Рис. 1. Гексагональная плотноупакованная структура с изображением базисной (1) и призматической (2) плоскостей – (а); схематическое изображение расположения базисных плоскостей – (б), призматических плоскостей – (в)

Потенциалы взаимодействия электронов с кристаллографическими плоскостями рассчитывались с использованием методики, изложенной в [3]. На рис. 2а, б, в сплошными кривыми изображены унимодальные потенциалы взаимодействия этих частиц с базисными плоскостями кристаллов титана, кобальта и лантана (см. рис. 1б), а штриховыми кривыми – неунимодальные потенциалы взаимодействия с призматическими плоскостями этих же кристаллов (см. рис. 1в).

Кроме того, на рис. 2а, б, в пунктирными кривыми представлены потенциалы взаимодействия электронов с главными плоскостями (100) в кристаллах ванадия, железа и бария, обладающих кубической симметрией. Такой выбор связан с тем, что V, Fe и Ba являются, соответственно, соседними в таблице Менделеева соответственно к атомам Ti, Co и La).

Из этих рисунков видно, что для кристаллов с кубической симметрией глубины потенциальных ям в плоскостях (100) меньше, чем глубины потенциальных ям в базисных плоскостях кристаллов с гексагональной симметрией. С другой стороны, по сравнению с глубинами потенциальных ям в призматических плоскостях их глубины могут быть:

a) больше, как показано на рис. 2а для кристалла титана (такая же ситуация имеет место и для кристаллов Zn, Zr, Ru и Cd, как показано на рис. 36 и рис. 4a, в, г);

б) сравнимыми, как показано на рис. 2b для кристалла кобальта (такая же ситуация реализуется и в кристаллах Sc, Y и Tc, как показано на рис. 3a, в и рис. 4б) и, наконец,

в) меньшими, как в случае кристаллов лантана (см. рис. 2в) и бериллия (см. рис. 16а в заключительной части доклада).

Очевидно, что эти отличия в потенциалах взаимодействия должны проявляться и в спектрах каналированного излучения (КИ).

Рис. 2. Потенциалы взаимодействия электронов с базисными плоскостями (сплошные кривые) и призматическими плоскостями (штриховые кривые) в кристаллах: (а) – титана,

(б) – кобальта, (в) – лантана; пунктирными кривыми изображены потенциалы взаимодействия электронов с плоскостями (100) соответственно в кристаллах ванадия, железа и бария

Рис. 3. Потенциалы взаимодействия электронов с базисными плоскостями (сплошные кривые) и призматическими плоскостями (штриховые кривые) в гексагональных кристаллах: (а) – скандия, (б) – цинка, (в) – иттрия; пунктирными кривыми изображены потенциалы взаимодействия электронов с плоскостями (100) соответственно в кристаллах кальция, меди и стронция

Рис. 4. Потенциалы взаимодействия электронов с базисными плоскостями (сплошные синие кривые) и призматическими плоскостями (штриховые красные кривые) в ГПУ кристаллах: (*a*) – циркония, технеция, (*в*) – рутения, (*г*) – кадмия; пунктирными зеленые кривыми изображены потенциалы взаимодействия электронов с плоскостями (100) соответственно в кристаллах ниобия, молибдена, родия и серебра

Для численного решения классической задачи Штурма-Лиувилля, т.е. энергетических уровней поперечного движения нахождения И функций удобно соответствующих ИМ волновых для потенциалов взаимодействия электронов с базисными плоскостями (0001) в кристаллах с гексагональной плотноупакованной структурой воспользоваться аппроксимацией

$$U(\xi) = -U_0/\operatorname{ch}^{\alpha}(\xi d/b), \qquad (1)$$

где $\xi = x/d = 2x/c$ – относительная координата (параметры *c* и параметры потенциала (1) для всех исследуемых гексагональных кристаллов приведены в таб. 1).

Таб. 1. Численные значения параметров U₀, b, α и c в кристаллах скандия, титана, кобальта, цинка, иттрия, церия, технеция, рутения, кадмия и лантана

Sc	Ti	Co	Zn	Y	Zr	Тс	Ru	Cd	La

U_0 , eV	38	48,4	74,5	70,6	50,2	61,1	98,3	99,5	84,9	52,1
<i>b</i> , A	0,19	0,15	0,22	0,24	0,14	0,16	0,10	0,13	0,17	0,30
α	0,7	0,6	1,2	1,0	0,5	0,6	0,4	0,6	0,6	1,4
<i>c</i> , A	5,27	4,69	4,071	4,95	5,73	5,15	4,39	4,28	5,82	6,07

Для потенциалов взаимодействия электронов с призматическими плоскостями (1100) в кристаллах с гексагональной плотноупакованной структурой использовалась следующая аппроксимация:

$$U(\xi) = -\frac{U_{01}}{\mathrm{ch}^{\alpha_1} \left[(\xi + 1/6) d/b_1 \right]} - \frac{U_{02}}{\mathrm{ch}^{\alpha_2} (\xi d/b_2)} - \frac{U_{01}}{\mathrm{ch}^{\alpha_1} \left[(\xi - 1/6) d/b_1 \right]}, \qquad (2)$$

где $\xi = x/d = 2x/a\sqrt{3}$ – относительная координата (значения постоянных решеток *a* и другие параметры потенциала (2) приведены в таб. 2).

Таб. 2. Численные значения параметров U₀₁, U₀₂, b₁, b₂, α₁, α₂ и *а* в кристаллах скандия, титана, кобальта, цинка, иттрия, церия, технеция, рутения, кадмия и лантана

	Sc	Ti	Co	Zn	Y	Zr	Tc	Ru	Cd	La
U_{01} , eV	19	23	34	26,5	24,2	31,7	48	49,4	30	31
U_{02} , eV	4,2	6,2	9,3	7,2	5,7	5,6	9	11	8	5,6
b_1 , A	0,28	0,23	0,21	0,35	0,22	0,25	0,11	0,15	0,26	0,33
b_2 , A	0,22	0,26	0,23	0,23	0,22	0,18	0,2	0,2	0,34	0,39
α_1	1,7	1,5	1,6	3	1,2	1,5	0,7	1,1	1,8	1,8
α_2	1	1	1	1	0,5	1	1	1	1	0,9
<i>a</i> , A	3,31	2,95	2,51	2,66	3,65	3,28	2,74	2,70	2,98	3,75

Для взаимодействия потенциалов электронов с главными кристаллографическими плоскостями (100) в кристаллах с кубической кристаллической решеткой используется аппроксимация (1) с относительной координатой $\xi = x/d = 2x/a$ (значения постоянных решеток *a* и другие аппроксимационных потенциалов параметры исследуемых для всех кристаллов с кубическими кристаллическими структурами приведены в таб. 3).

Таб. 3. Численные значения параметров U₀, b, α и a в кристаллах кальция, ванадия, железа, меди, стронция, ниобия, молибдена, родия, серебра и бария

	Ca	V	Fe	Cu	Sr	Nb	Mo	Rh	Ag	Ba
U_0, eV	20,3	33	40,3	60	26,7	45	54,9	88	70	23,3
<i>b</i> , A	0,3	0,18	0,2	0,18	0,24	0,17	0,14	0,1	0,17	0,25
α	1	1,2	1,7	1	0,8	1,0	0,9	0,5	0,8	1
<i>a</i> , A	3,30	3,02	2,87	3,615	6,08	3,30	3,15	3,80	4,09	5,02

На основе этих потенциалов численно рассчитаны энергетические уровни поперечной энергии и соответствующие им волновые функции. С

использованием этих данных также численно рассчитаны в дипольном приближении спектры $G(\omega)$ каналированного излучения (см. рис. 5а, б, в).

Рис. 5. Спектральные распределения энергии КИ для электрона с Лоренц-фактором γ = 20 на единице пути при его движении под нулевым углом по отношению к базисным плоскостям (1) и призматическим плоскостям (2) соответственно в кристаллах титана – (а), кобальта – (б) и лантана – (в); на рис. а, б, в показаны спектральные распределения энергии КИ (3), возникающего при каналировании электрона в главных плоскостях (100)

соответственно в кристаллах ванадия, железа и бария

Как видно из рис. 5, спектральные характеристики (высоты и частоты спектральных пиков, а также их полные интенсивности, оцененные по площадям спектральных распределений в единицах кэВ/см (см. значения в правых верхних углах на рис. 5)) в гексагональных кристаллах в основном являются лучшими, чем в кристаллах с кубической симметрией.

Такая же тенденция сохраняется и для других семи гексагональных кристаллов, приведенных в таб. 1, 2, 3; если глубины потенциальных ям в соответствующих кубических кристаллах ближе к глубинам потенциальных ям в базисных плоскостях, как, например, в кристаллах в Zn, Zr, Ru и Cd, то и все спектральные характеристики будут близкими; если же подобная ситуация имеет место с глубинами потенциальных ям в призматических плоскостях, как, например, в кристаллах Sc, Y и Tc, то их спектральные характеристики будут близкими к спектральным характеристикам в кубических кристаллах. Наконец, в кристаллах Be и La спектральные характеристики будут существенно лучшими, чем кубических кристаллах Li и Ba.

В работе также исследуется также спонтанное излучение, возникающее при осевом каналировании слаборелятивистских электронов в кристаллах с гексагональной плотноупакованной структурой (на рис. 6 показаны те которых осуществляется каналированное направления, ВДОЛЬ движение электронов). Из простого анализа показывается, что спектральные распределения для этих кристаллов В основном обладают лучшими характеристиками, чем в кристаллах с гранецентрированной или объемноцентрированной кубическими структурами, построенных из атомов, соседних в таблице элементов Менделеева.

Рис. 6. Гексагональная плотноупакованная структура с изображением с-осей, перпендикулярных к базисной плоскости (0001), и осей $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$, $\begin{bmatrix} \overline{1}2\overline{1}0 \end{bmatrix}$ и $\begin{bmatrix} \overline{1}\overline{1}20 \end{bmatrix}$, параллельных этой плоскости (*a*), схематическое изображение проекций с-осей в базисной плоскости (0001) – (*б*), схематическое изображение проекций, например, осей $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$ в плоскости, перпендикулярной к оси *x* – (*в*)

Как видно из рис. 6, с-осям соответствует площадь квантования $A = a^2 \sqrt{3}/4$, а осям $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$ (и эквивалентным им осям $\begin{bmatrix} \overline{1}2\overline{1}0 \end{bmatrix}$ и $\begin{bmatrix} \overline{1}\overline{1}20 \end{bmatrix}$) соответственно $A = ac\sqrt{3}/4$.

На рис. 7а показан 3D-график потенциала взаимодействия электронов с с-осями в кристалле цинка, построенный в треугольной области $|\xi| \le 1/2$, $1/2\sqrt{3} \le \eta \le 1/\sqrt{3} - \sqrt{3}|\xi|$ (см. рис. 96), где $\xi = x/a$ и $\eta = y/a$ – относительные координаты. На рис. 76 показана проекция этого потенциала взаимодействия в плоскости $\xi = 0$ (пунктирная кривая соответствует аппроксимационной функции).

Рис. 7. Изображение 3D-графика потенциала взаимодействия электронов с с-осями в кристалле цинка – (*a*), изображение 2D-графика этого потенциала взаимодействия в плоскости ξ=0 – (б)

На рис. 8а показан 3D-график потенциала взаимодействия электронов с осями $[2\overline{1}\overline{1}0]$ в кристалле цинка, построенный в прямоугольной области $|\xi| \le \sqrt{3}/4$, $|\eta| \le c/4a$. На рис. 8б показана проекция этого потенциала взаимодействия в плоскости $\xi = 0$ (пунктирная кривая соответствует аппроксимационной функции).

Рис. 8. Изображение 3D-графика потенциала взаимодействия электронов с осями [2110] в кристалле цинка – (*a*), изображение 2D-графика этого потенциала взаимодействия в плоскости ξ = 0 – (б)

На рис. 9а показан 3D-график потенциала взаимодействия электронов с осями [100] в кристалле меди, построенный в квадратной области $|\xi| \le 1/4$, $|\eta| \le 1/4$. На рис. 9б показана проекция этого потенциала взаимодействия в плоскости $\xi = 0$ (пунктирная кривая соответствует аппроксимационной функции).

Рис. 9. Изображение 3D-графика потенциала взаимодействия электронов с осями [100] в кристалле меди – (*a*), изображение 2D-графика этого потенциала взаимодействия в плоскости ξ = 0 – (б)

Для потенциалов взаимодействия электронов как с с-осями, так и с осями $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$, $\begin{bmatrix} \overline{1}2\overline{1}0 \end{bmatrix}$ и $\begin{bmatrix} \overline{1}\overline{1}20 \end{bmatrix}$ в кристаллах с гексагональной плотноупакованной структурой используется аппроксимация

$$V(\zeta) = -V_0 / \operatorname{ch}^{\alpha} (\zeta a/b), \qquad (3)$$

где $\zeta = \rho/a$ – относительная координата (постоянные решеток *a* и численные значения параметров α , *b* и V₀ потенциала (3) для всех исследуемых гексагональных кристаллов приведены в таб. 4 и таб. 5).

Таб. 4. Численные значения параметров U₀, b, α и c при каналировании электронов вдоль с-осей в кристаллах скандия, титана, кобальта, цинка, иттрия, церия, технеция, рутения, кадмия и лантана

	Sc	Ti	Со	Zn	Y	Zr	Tc	Ru	Cd	La
V_0 , eV	115,2	139,2	199,8	130,1	137,3	197,2	365,5	346,3	196,8	156,2
<i>b</i> , A	0,110	0,080	0,140	0,165	0,145	0,165	0,015	0,030	0,165	0,170
α	0,6	0,5	1,1	1,1	0,9	1,1	0,1	0,2	1,1	0,9
<i>a</i> , A	3,31	2,95	2,51	2,66	3,65	3,28	2,74	2,70	2,98	3,75
<i>c</i> , A	5,27	4,69	4,071	4,95	5,73	5,15	4,39	4,28	5,82	6,07

Таб. 5. Численные значения параметров V₀, *b* и α при каналировании электронов вдоль осей [2110], [1210] и [1120] в кристаллах скандия, титана, кобальта, цинка, иттрия, церия, технеция, рутения, кадмия и лантана

	Sc	Ti	Co	Zn	Y	Zr	Tc	Ru	Cd	La
V_0 , eV	194,5	236,5	348,6	262,2	292,0	326,5	611,9	575,3	387,6	266,1
b A	0,090	0,045	0,060	0,090	0,090	0,065	0,034	0,035	0,065	0,100
α	0,4	0,2	0,3	0,4	0,4	0,3	0,2	0,2	0,3	0,4

Для потенциалов взаимодействия электронов с главными кристаллографическими осями [100] в кристаллах с гранецентрированной или объемно-центрированной кубическими решетками используется та же самая аппроксимация (1), но с численными значениями параметров V_0 , b, α и a, приведенными в таб. 6.

Таб. 6. Численные значения параметров V₀, b, α и a в кристаллах кальция, ванадия, железа, меди, стронция, ниобия, молибдена, родия, серебра и бария

	Ca	V	Fe	Cu	Sr	Nb	Mo	Rh	Ag	Ba
	ГЦК	ОЦК	ОЦК	ГЦК	ГЦК	ОЦК	ОЦК	ГЦК	ГЦК	ОЦК
V_0 , eV	75,5	249,1	312,3	222,7	108,8	355,0	520,4	473,4	282,0	167,0
<i>b</i> , A	0,150	0,045	0,060	0,100	0,180	0,045	0.018	0,016	0,110	0,140
α	0,6	0,2	0,3	0,7	0,7	0,2	0,1	0,1	0,6	0,5
<i>a</i> , A	3,30	3,02	2,87	3,615	6,08	3,30	3,15	3,80	4,09	5,02

Кристаллографическим осям [100] в кристаллах с гранецентрированной и объемно-центрированной кубических структурах соответствуют следующие

площади квантования: $A^{(\Gamma \amalg K)} = a^2/4$ и $A^{(O \amalg K)} = a^2/2$.

В таб. 7 приведены численные значения поперечных энергий - ε_{n_pm} , соответствующие каналированию слаборелятивистских электронов с Лоренцфактором $\gamma = 20$ вдоль с-осей и осей $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$ в кристаллах с гексагональной плотноупакованной структурой и при каналировании электронов вдоль осей $\begin{bmatrix} 100 \end{bmatrix}$ в соответствующих кубических кристаллах.

Таб. 7. Численные значения поперечных энергий - ε_{n_pm} , возникающие при каналировании электронов вдоль с-осей и осей $\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$ в кристаллах скандия, титана, кобальта, цинка, иттрия, церия, технеция, рутения, кадмия и лантана, а также вдоль осей $\begin{bmatrix} 100 \end{bmatrix}$ в кристаллах кальция, ванадия, железа, меди, стронция, ниобия, молибдена, родия, серебра и бария

Кристалл	Ось	m				$-\varepsilon_{n_{\rho}m}$			
			1	2	3	4	5	6	7
	с-ось	0	76,83	27,71	5,79				
Sc		1	46,25	13,26	2,04				
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	144,08	74,88	34,92	12,40	2,07		
		1	102,66	51,24	21,42	5,62	0,63		
Ca	[100]	0	52,33	21,33	6,30				
		1	33,43	11,63	3,38				
	с-ось	0	88,37	28,33	4,42				
Ti		1	49,71	11,95	1,17				
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	167,25	85,98	41,37	15,91	3,32		
		1	116,05	59,15	26,10	7,92	1,12		
V	[100]	0	177,60	92,89	45,84	18,49	4,40	0,06	
		1	124,44	64,79	29,67	9,81	1,46		
	с-ось	0	142,39	58,23	13,64	0,35			
Со		1	93,06	30,31	3,13				
	$\left[2\overline{1}\overline{1}0 ight]$	0	262,76	147,1 7	78,34	36,04	11,86	1,85	
		1	193,26	107,0 7	53,94	21,79	5,09	0,08	
Fe	[100]	0	231,88	125,5 3	63,56	26,70	7,05	0,46	
		1	167,48	89,66	42,87	15,53	2,55		
	с-ось	0	91,05	34,89	6,80				
Zn		1	57,79	16,86	1,74				
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	202,30	116,0 0	62,36	28,95	9,69	1,69	
		1	151,79	85,05	43,12	17,56	4,29		
Cu	[100]	0	161,77	75,80	28,01	5,28			
		1	110,69	47,05	13,57	0,98			
	с-ось	0	96,38	38,39	8,98	0,28			
Y		1	61,85	19,74	2,66				
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	228,34	135,1 7	75,71	37,58	14,49	2,95	

		1	174,18	101,3	54,45	27,70	7,61	1,16	
				4					
Sr	[100]	0	68,74	20,58	2,66				
		1	37,84	7,79	0,64				
	с-ось	0	147,89	71,73	25,37	3,85			
Zr		1	104,45	44,20	11,08	1,06			
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	249,25	143,4	78,79	39,04	13,95	2,38	
				5					
		1	186,27	107,4	57,92	26,50	8,25	0,95	
Nh	[100]	0	266 10	<u> </u>	88.04	45.61	10.35	6.46	
140		U	200,17	3	00,04	45,01	17,55	0,40	
	-	1	197.66	115.4	63 40	30.15	11 27	2 14	
		•	177,00	7	03,10	50,15	11,27	2,11	
	с-ось	0	227 30	97.72	35.23	6.67			
Тс	C OCD	1	141 18	57.63	15 99	1 77			
		0	457.93	264.0	147.95	74 16	29.51	6 50	
		Ŭ	107,90	0	117,50	, ,,10	27,01	0,20	
		1	340.14	201.4	113.65	56.01	20.52	3.26	
			,	4	,	,	,	,	
Mo	[100]	0	366,36	203,0	110,19	52,86	19,21	4.16	
				5					
		1	262,08	147,2	76,38	32,74	9,16	0,85	
				9					
	с-ось	0	227,19	98,81	35,97	6,97			
Ru		1	143,73	59,12	16,73	1,90			
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	430,31	247,7	138,58	69,23	27,37	5,93	
				9					
		1	319,52	189,2	106,73	52,52	19,15	2,99	
				0					
Rh	[100]	0	316,24	158,2	74,02	26,97	5,03		
				8	17.0.1	10.01	1 10		
		1	213,65	106,3	45,04	12,36	1,69		
		0	14754	9	25.22	2.90			
Ca	с-ось	<u> </u>	14/,54	/1,49	25,23	3,80			
Cu		1	104,10	44,01	106.52	1,05	25.21	7.40	0.90
		U	302,23	102,2	100,32	30,77	23,21	7,42	0,00
		1	231 53	140.0	80.75	A1 5A	16.86	3 75	
		1	231,33	6	00,75	т1,5т	10,00	5,75	
Ag	[100]	0	217.81	120.8	59.43	22.93	5.29		
8	[]	-	,	0			-,		
		1	162,11	85,27	37,86	11,46	2,20		
	с-ось	0	117,90	59,28	23,35	5,41			
La		1	84,34	38,05	11,77	2,35			
	$\begin{bmatrix} 2\overline{1}\overline{1}0 \end{bmatrix}$	0	210,96	128,8	75,30	39,96	17,55	5,03	0,36
				7					
		1	163,63	98,54	55,58	27,42	10,24	2,31	
Ba	[100]	0	131,63	77,98	42,98	20,60	7,36	1,61	
		1	100,93	58,01	30,16	12,81	3,61		

Далее, на основе данных из таб. 7, а также соответствующих им волновых функций рассчитываются спектры КИ для всех исследуемых гексагональных кристаллов, а также спектры КИ для соответствующих кубических кристаллов. Отметим, что рассматривается самый идеальный случай, когда пучок электронов падает под нулевым углом к каналируемым осям и не имеет ни угловой, ни энергетической дисперсий. В этом случае в соответствии с выражением

$$P_{n_{\rho}l}(\theta) = \frac{2\pi}{A} (2 - \delta_{l0}) \left| \int_{0}^{\rho_{0}} \rho^{l+1} J_{l} \left(\frac{p\rho}{\hbar} \sin \theta \right) \chi_{n_{\rho}l}(\rho) d\rho \right|^{2}$$
(4)

при $\theta = 0$ заселяются только состояния с l = 0, а спонтанные радиационные переходы в дипольном приближении осуществляются только на нижние энергетические уровни с l = 1. Это схематически показано на рис. 10 на примере пяти энергетических уровней и при l = 0, и при l = 1. Из рис. 10 видно, что в этом случае в рассматриваемой системе уровней возможны десять спонтанных радиационных переходов).

Рис. 10. Схематическое изображение спонтанных радиационных переходов между квантовыми уровнями с поперечной энергией ε_{n_00} при l=0 и квантовыми уровнями с

поперечной энергией $\varepsilon_{n_0 1}$ при l = 1

Рис. 11. Спектральные распределения энергии КИ для электрона с Лоренц-фактором $\gamma = 20$ на единице пути при его движении под нулевым углом по отношению к осям $\begin{bmatrix} 2 \overline{1} \overline{10} \end{bmatrix}$ (1) и

с-осям (2) соответственно в кристаллах титана – (а), кобальта – (б) и лантана – (в); на рис. а, б, в показаны спектральные распределения энергии КИ (3), возникающего при каналировании электрона в главных осях [100] соответственно в кристаллах ванадия, железа и бария

Для завершения анализа рассмотрим спектры спонтанного излучения для кристалла бериллия и сравним их со спектром излучения в кристалле лития. На рис. 12 представлен вид спектров в случае плоскостного каналирования.

Рис. 12. Потенциалы взаимодействия электронов с базисными плоскостями (сплошная кривая) и призматическими плоскостями (штриховая кривая) в кристалле бериллия, с плоскостями (100) в кристалле лития (пунктирная кривая) – (*a*); спектральные распределения энергии КИ для электрона с Лоренц-фактором γ = 20 на единице пути при его движении под нулевым углом по отношению к базисным плоскостям (1) и призматическим плоскостям (2) в кристалле бериллия и к главным плоскостям (100) в кристалле лития (3) – (*б*)

На рис. 13а, б показаны 3D-графики потенциалов взаимодействия электронов с осями $[2\overline{1}\overline{1}0]$ и с-осями в кристалле бериллия, а на рис. 13в спектральные распределения энергии КИ для электрона с Лоренц-фактором $\gamma = 20$ на единице пути при его движении под нулевым углом по отношению к осям $[2\overline{1}\overline{1}0]$ (1) и с-осям (2) в кристалле бериллия и к главных осях [100] в кристалле лития (3) – (б)

Рис. 13. 3D-графики потенциалов взаимодействия электронов с осями $\begin{bmatrix} 2 \overline{1} \overline{1} 0 \end{bmatrix}$ (*a*) и сосями (*б*) в кристалле бериллия; спектральные распределения энергии КИ для электрона с Лоренц-фактором γ = 20 на единице пути при его движении под нулевым углом по отношению к осям $\begin{bmatrix} 2 \overline{1} \overline{1} 0 \end{bmatrix}$ (1) и к с-осям (2) в кристалле бериллия и к главных осях [100] в

кристалле лития (3) – (в)

выводы

- Проведено исследование спонтанного излучения, возникающее при каналировании слаборелятивистских электронов с Лоренц-фактором γ = 20 вдоль базисных и призматических плоскостей в кристаллах Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd и La с гексагональной плотноупакованной структурой. Показано, что спектральные распределения излучения для этих кристаллов при каналировании вдоль базисных плоскостей обладают лучшими характеристиками, чем в кристаллах соседних в таблице Менделеева элементов с гранецентрированной или объемноцентрированной кубическими структурами.
- 2) В случае каналирования слаборелятивистских электронов с Лоренцфактором γ = 20 вдоль направлений [2110] ([1210] и [1120] – эквивалентные ориентации) и с-осей спектральные распределения обладают лучшими характеристиками, чем в кристаллах соседних в таблице Менделеева элементов с гранецентрированной или объемноцентрированной кубическими структурами только для скандия, иттрия и лантана.
- 3) Для гексагонального кристалла бериллия спектры спонтанного излучения характеризуются лучшими параметрами в сравнении со спектральными параметрами в кристалле лития как в плоскостном случае (и в базисных, и в призматических плоскостях спектры КИ значительно превосходят спектр КИ в плоскостях (100) в кристалле лития), так и в осевом случае (только при каналировании вдоль направления [2110] превосходит спектр КИ в осях [100] в кристалле лития).

ЛИТЕРАТУРА

[1] Н. Ашкрофт, Н. Мермин. Физика твердого тела, Т. 1. – М.: Мир, 1979. 400 с.

[2] В.Р. Бираз, В.П. Левченко, А.А. Повзнер. Строение и физические свойства кристаллов. – Екатеринбург: УРГУ-УПИ, 2009, 164 с.

[3] В.А. Базылев, Н.К. Жеваго. Излучение быстрых частиц в веществе и во внешних полях. – М.: Наука, 1987, 272 с.