

50-я Международная Тулиновская конференция по физике взаимодействия заряженных частиц с кристаллами



### МОДИФИКАЦИЯ ЯНУСОПОДОБНЫХ ДВУХКОМПОНЕНТНЫХ КЛАСТЕРОВ ПОД ДЕЙСТВИЕМ ЧАСТИЦ Ar<sub>1</sub> и Ar<sub>13</sub> низких энергий

Д. В. Широкорад<sup>1)</sup>, <u>Г. В. Корнич<sup>1)</sup></u>, С. Г. Буга<sup>2),3)</sup>

<sup>1)</sup>Национальный университет «Запорожская политехника», Запорожье, Украина <sup>2)</sup>ФГБНУ "Технологический институт сверхтвердых и новых углеродных материалов", г. Москва, г. Троицк, Россия <sup>3)</sup>Московский физико-технический институт (ГУ МФТИ), Московская обл., г. Долгопрудный, Россия

25–27 Мая 2021, МГУ им. М. В. Ломоносова, Москва, Россия







#### **Review**

- Prologue : MD simulation of Cu-Cu, Cu-Au, Cu-Bi, Ni-Al Janus-like clusters under argon particle impacts from 2013.
- The MD model details.
- The 100-500 ps kinetics and final magnitudes of geometric characteristics, potential energy, temperature and sputtering yields of the Ni-Al, Cu-Au and Cu-Bi Janus-like nanoclusters under up to1.0 keV Ar and Ar<sub>13</sub> impacts.
- □ The influence of bombarding regimes on the intensity of core-shell structure formation in the Ni-Al, Cu-Au and Cu-Bi Janus-like cluster.
- □ *Epilogue* : conclusion and outlook.







- 1. Andersen, H. H., & Bay, H. L. (1974) Nonlinear effects in heavy-ion sputtering // *Journal of Applied Physics*, 45(2), 953–954.
- 2. Andersen, H. H., & Bay, H. L. (1975) Heavy-ion sputtering yields of gold: Further evidence of nonlinear effects // *Journal of Applied Physics*, *46*(6), 2416–2422.
- 3. Yamada, I., Matsuo, J., Insepov, Z., Takeuchi, D., Akizuki, M., and Toyoda, N. (1996) Surface processing by gas cluster ion beams at the atomic (molecular) level // *Journal of Vacuum Science & Technology A: Vacuum, Surface s, and Films*.
- 4. Ieshkin A.E., Nazarov A.V., Tatarintsev A.A., Kireev D.S., Zavilgelsky A.D., Shemukhin A.A., Chernysh V.S. (2020) Energy distributions of the particles sputtered by gas cluster ions. Experiment and computer simulation // *Surface and Coating Technology.*- V.404.- 126505.
- 5. Sandoval, L., & Urbassek, H. M. (2015) Collision-spike Sputtering of Au Nanoparticles // Nanoscale Research Lett ers, 10(1), 314.
- 6. Nordlund, K., Järvi, T., Meinander, K. et al. (2008) Cluster ion–solid interactions from meV to MeV energies // Appl . Phys. A , 91: 561.
- 7. Kornich, G. V., Betz, G., Kornich, V. G., Shulga, V. I., & Yermolenko, O. A. (2011) Synergism in sputtering of copper nanoclusters on graphite substrate at low energy Cu2 bombardment // Nuclear Instruments and Methods i n Physics Research, Section B: Beam Interactions with Materials and Atoms, 269(14), 1600–1603.
- 8. Корнич Г.В., Бетц Г., Запорожченко В.И., Бажин А.И. (2003) Моделирование ионного распыления кластеров меди с поверхности монокристалла графита // *Письма в Журнал Технической Физики*.- Т.29(22).- С.33-38.



# **Prologue :** MD simulation of Cu-Cu, Cu-Au, Cu-Bi, Ni-Al Janus-like clusters under argon particle impacts from 2013



- Shyrokorad D.V., Kornich G.V., Buga S.G. Evolution of the Ni-Al Janus-like clusters under the impacts of low-energy Ar and Ar13 projectiles // Materials Today Communications.-23 – 2020. - 101107-12. <u>https://doi.org/10.1016/j.mtcomm.2020.101107</u>.
- Shyrokorad D.V., Kornich G.V., Buga S.G. Formation of the core-shell structures from bimetallic Janus-like nanoclusters under low-energy Ar and Ar13 impacts: a molecular dynamics study // **Comput. Mater. Sci**.- 159(3)- 2019.- 110-119. <u>https://doi.org/10.1016/j.commatsci.2018.12.</u> 002.
- Shyrokorad D.V., Kornich G.V. Simulation of collision Stage of Evolution of Bipartite Bimetallic Clusters under Influence of Low-Energy Argon Dimers // Metallofiz. Noveishie Tekhnol.- 39(2)- 2017.- 151-163. <u>https://doi.org/10.15407/mfint.39.02.0151.</u>
- Shyrokorad D. V., Kornich G. V., Buga S. G. Simulation of the interaction of free Cu–Bi clusters with low-energy single atoms and clusters of argon // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques.- 11(3) 2017. 639-645. <u>https://doi.org/10.1134</u>/S102745101703034X.
- Shyrokorad D. V., Kornich G. V., Buga S. G. Simulation of the Interaction of Bipartite Bimetallic Clusters with Low-Energy Argon Clusters // Physics of the Solid State. - 59(1) – 2017.- 198-208. <u>https://doi.org/10.1134/S1063783417010292</u>.
- Shyrokorad D.V., Kornich G.V., Buga S.G. Molecular Dynamics Simulation of Bipartite Bimetallic Clusters under Low-Energy Argon Ion Bomba rdment // Physics of the Solid State. 58 (2) 2016.- 387-393. <u>https://doi.org/10.1134/S1063783416020281</u>.
- Shyrokorad D. V. High-temperature sputtering of bimetallic clusters by low-energy argon clusters // Technical Physics Letters. 42 (10).-2016.– 975–978. <u>https://doi.org/10.1134/S106378501610014X</u>.
- □ Shyrokorad D. V., Kornich G. V. Evolution of isolated copper clusters under low-energy argon ion bombardment // Physics of the Solid State. 56 (12) 2014.- 2568-2572. <u>https://doi.org/10.1134/S1063783414120300</u>.



## The MD model



#### Initial Janus-like Ni-Al cluster, Ar<sub>13</sub> impact cluster



The enthalpy of mixing:

 $\Delta H_{mix} = E_{rand} - C_1 \cdot E_1 - C_2 \cdot E_2 ;$ 

E1 and E2 - the cohesive energies of elements 1 and 2 in pure states;
C1 and C2 - the atomic fractions in the alloy;
Erand – the cohesive energy of a random alloy;

#### **Details**

- □ 195Ni+195Al atoms = Ni-Al cluster;
- □ Ni(Al)-Ni(Al): Ackland + BM potentials;
- □ Ar-Ar: HFDTCS1 + BM potential;
- □ Ar-Ni(Al): ZBL potential;
- Ni, Al, Cu, Au mono-component cluster parts non-ideal truncated octahedrons with hexagonal {111} and square {100} faces, fcc internal part; Bi mono-component cluster part has a shape close to sphere with surface fragments of the rhombic dodecahedron, bcc internal part; Ar13– icosahedrons;
- Hmix Ni-Al: -22 kJ/mol, Cu-Au: -9 kJ/mol, Cu-Bi: 15 kJ/mol;
- □ The energy dissipation procedure 150 ps, the temperatures o f relaxed Janus-like Ni-Al, Cu-Au, Cu-Bi clusters did not ex ceed 0.01K;
- Ar and Ar13 impact energies up to 1.0 keV, 200 tests, cluster e volution for 100 or 500 ps;
- □ The authors' MD code, Verlet algorithm, time step <0.5 fs. The OpenMP and MPI technologies, the C/C++ environment, computer systems with distributed and shared memory.



## MD simulated melt points of 195 atom Ni, Al, Cu, Au and Bi clusters. AEIs (Atomic Equivalence Indexes) method











# Evolution of the potential energy and temperature of the clusters at different impact energies and projectiles





4.5 ¬

4.0 -

Number of sputtered atoms 3.0 2.0 1.5 1.0 1.0

0.5 -

0

### Temperature and sputtering yield kinetics of Ni-Al clusters at Ar<sub>1</sub> and Ar<sub>13</sub> impacts





# Synergistic sputtering effect in the Ni-Al and Cu-Au clusters at Ar<sub>1</sub> and Ar<sub>13</sub> impacts





#### Spherical distributions of atomic densities of the monocomponent parts in the clusters at the <u>100 eV</u> impact energy





Spherical distributions of atomic densities of the monocomponent parts in the clusters at the <u>300 eV</u> impact energy





Spherical distributions of atomic densities of the monocomponent parts in the clusters at the <u>1000 eV</u> impact energy







## **Epilogue : conclusion and outlook**



- ✓ The 100-500 ps evolution of the Ni-Al Janus-like cluster under up to 1.0 keV Ar<sub>1</sub> and Ar<sub>13</sub> impacts was simulated and compared with the results for the Cu-Au and Cu-Bi clusters.
- ✓ The core-shell structure with predominantly Ni atoms in the inner part and Al atoms in the outer layer of the Ni-Al cluster was found at Ar single atom impact.
- ✓ An analogous mass transfer trend in the Ni-Al cluster was found at  $Ar_{13}$  cluster impacts, but the strong masking effect (excluding <100 eV impacts) of Al preferential sputtering, including noticeable thermal yield at extra high temperatures, does not allow a core-shell structure with predominantly Al atoms on the cluster surface to appear.
- ✓ After exposition of the Janus-like Cu-Bi clusters to Ar13 projectile with 300 eV and higher energy, Cu-enriched core and Bi-enriched shell were formed, while only partial coating with eccentricity of the atomic distributions took place at Ar1 impacts. The Cu-Au clusters undergo similar evolutions, and the correlation of the syntheses' intensities at Ar1 and Ar13 impacts also takes place.
- ✓ Tuning the energy and size of the bombarding particle is a promising tool of making bimetal clusters with desired space component distributions, but conditions of bombardment may vary.



### Acknowledgements



The research is carried out using the equipment of the shared research facilities of

✓HPC computing resources at Lomonosov Moscow State University;

✓ Sheared-Use Equipment Center of FSBI TISNCM, Troitsk, Moscow.

## Thank you for your time!