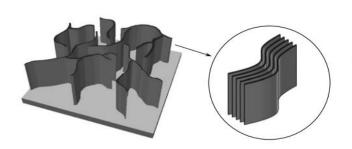
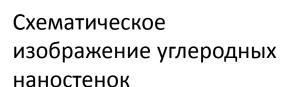
ФОРМИРОВАНИЕ НАНОСТЕНОЧНОЙ МОРФОЛОГИИ ПРИ ВЫСОКОДОЗНОМ ИОННОМ ОБЛУЧЕНИИ СТЕКЛОУГЛЕРОДА И УГЛЕРОДНОГО ВОЛОКНА

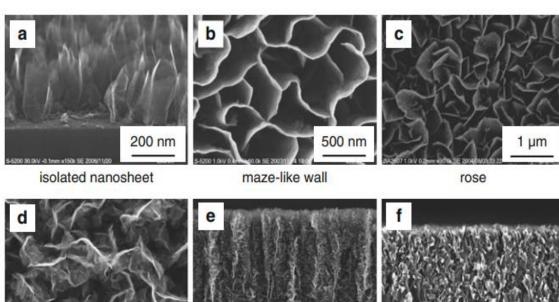
Н.Н. Андрианова¹⁾, А.М. Борисов^{1,2)}, Е.С. Машкова³⁾, М.А. Овчинников³⁾, М.А. Тимофеев³⁾

¹«Московский авиационный институт
 (Национальный исследовательский университет)», г. Москва, Россия


 ²Московский государственный технологический университет "СТАНКИН", г. Москва, Россия
 ³Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына
 МГУ имени М.В. Ломоносова, г. Москва, Россия


МОТИВАЦИЯ

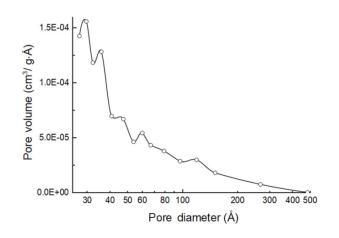
УГЛЕРОДНЫЕ НАНОСТЕНКИ РАЗЛИЧНОЙ МОРФОЛОГИИ


um

wavy

M. Hiramatsu M. Hori // Carbon Nanowalls Synthesis and Emerging Applications. Springer-Verlag/Wien. 2010

highly branched

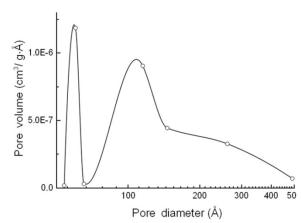
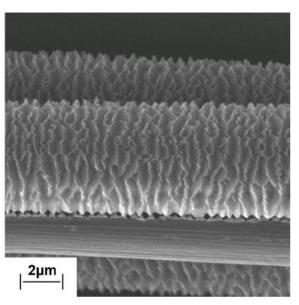

5 µm

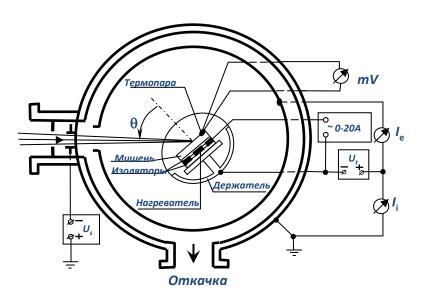
1 µm

dense (porous film)

МОТИВАЦИЯ

ИОННО-ЛУЧЕВЫЕ МЕТОДЫ ОБРАБОТКИ ВОЛОКНИСТЫХ МАТЕРИАЛОВ


Table 1. Sorption properties and pore sizes of irradiated and non-irradiated carbon fibers.

Carbon fiber material	Specific surface area, m ² /g	Sorption capacity, cm ³ /g	Relative pore volume up to 500 Å, cm³/g	Average pore diameter by desorption, Å
Irradiated high-modulus carbon fiber	10.6±0.8 (100 - 200)	2.43 (200 - 400)	0.011 (0.1 - 0.2)	58
Non-irradiated UKN-5000 carbon fiber	0.43	0.1	0.0003	352

A. M. Borisov, V. A. Gorina, E. S. Mashkova et.al.//Materials Today: Proceedings 5 (2018) 26058–26061

ЭКСПЕРИМЕНТ

ионное облучение

МАСС-МОНОХРОМАТОР НИИЯФ МГУ

Ионы: Ar+

Энергия: 30 кэВ

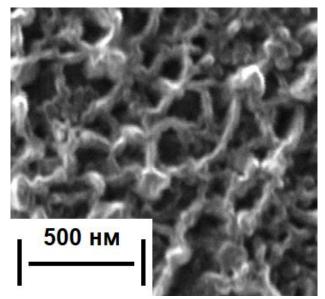
Нормальное падение ионов $\theta = 0$

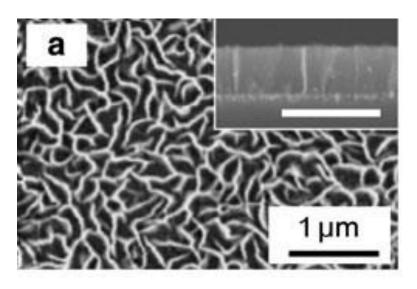
Флуенс: фt ~10¹⁸-10¹⁹ ион/см²

Плотность пучка~ 0.4 мА/см²

Температуры облучения и термообработки
От RT до 700°C

МИШЕНИ

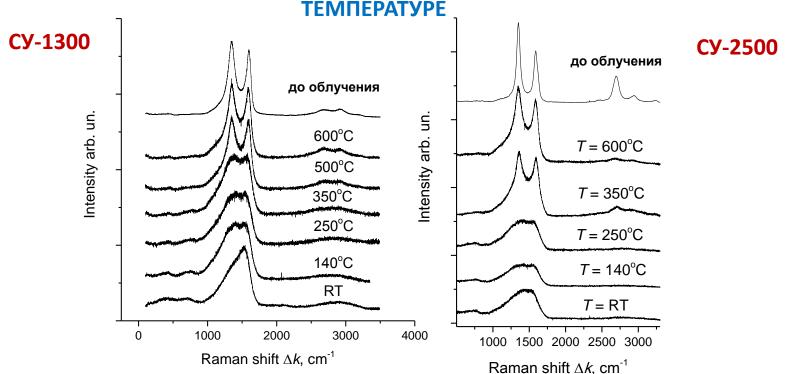

Углеродная ткань ТГН-2МК из вискозы Высокотемпературный и низкотемпературный стеклоуглерод СУ-2500 и СУ-1300


<u>МЕТОДЫ ИССЛЕДОВАНИЯ МОДИФИЦИРОВАННОГО СЛОЯ</u>

- •Растровая электронная микроскопия (РЭМ)
- •Спектроскопия комбинационного рассеяния света (спектрометр Horiba Yvon T64000) на длине волны 514,5 нм.

ПОЛУЧЕНИЕ НАНОСТЕНОЧНЫХ СТРУКТУР НА СТЕКЛОУГЛЕРОДАХ

СУ-2500



M. Hiramatsu M. Hori // Carbon Nanowalls Synthesis and Emerging Applications. Springer-Verlag/Wien. 2010

Ионное облучение стеклоуглерода в условиях динамического отжига радиационных нарушений приводит к формированию сетчатой топографии — наностенкам, объединенным узлами, размеры ячеек которых зависят от температуры облучения.

РЕЗУЛЬТАТЫ

ЭВОЛЮЦИЯ СТРУКТУРЫ СТЕКЛОУГЛЕРОДОВ, ОБЛУЧЕННЫХ ПРИ РАЗЛИЧНОЙ

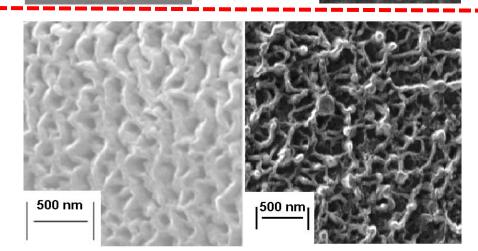
T < 140°С - аморфизация

140 ≤ T ≤ 350°C (250°C) – графитирование поверхностного слоя СУ-1300 (СУ-2500) 350 ≤ T ≤ 600°C (250 ≤T ≤ 600°C) – динамический отжиг исходной структуры стеклоуглерода

РЕЗУЛЬТАТЫ

ИОННОЕ ОБЛУЧЕНИЕ УГЛЕРОДНЫХ ВОЛОКОН ИЗ ВИСКОЗЫ

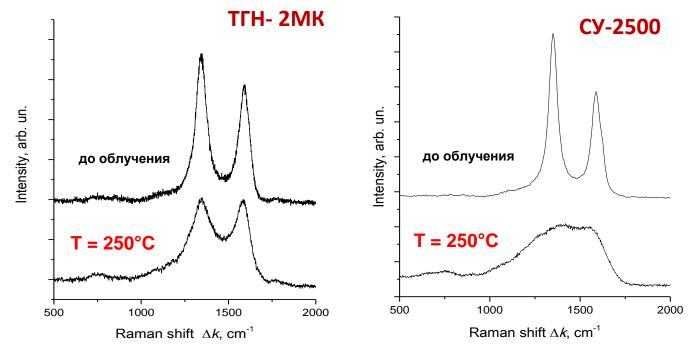
ТГН- 2МК СУ-2500


500 нм

до облучения

T = 250°C

Толщина наностенок


Углеродное волокно 100-200 нм

Стеклоуглерод 50-100 нм

РЕЗУЛЬТАТЫ

СРАВНЕНИЕ СТРУКТУРЫ ОБЛУЧЕННЫХ УГЛЕРОДНЫХ ВОЛОКОН ИЗ ВИСКОЗЫ СО СТРУКТУРОЙ ОБЛУЧЕННЫХ СТЕКЛОУГЛЕРОДОВ

Динамический отжиг радиационных повреждений, происходящий при температуре 250 °C, приводит к ионно-индуцированной графитизации фибриллярного углеродного волокна и глобулярного стекловидного углерода. 8

ВЫВОДЫ

Облучение ионами аргона с энергией 30 кэВ углеродных волокон из вискозы и стеклоуглеродов приводит к образованию наностеночной топографии поверхности при температурах выше температур динамического отжига (>200°C).

Толщина наноразмерных стенок для углеродного волокна больше (100-200 нм) чем для стеклоуглеродов (50-100 нм), тогда как размеры пор больше для стеклоуглеродов.

Структурные исследования наностеночных поверхностей показывают, что формирование наностеночной морфологии связывается с ионным распылением и радиационно-индуцированными процессами в углеродных материалах. Характерное проявление радиационно-индуцированных размерных изменений в стеклоуглероде – его усадка с соответствующим уплотнением поверхностного слоя при ионном облучении. Физическое распыление при этом обеспечивает формирование стационарных профилей пор с отвесными стенками. Аналогичные процессы происходят, по-видимому, и при облучении углеродного волокна из вискозы.

Спасибо за внимание!