ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПРОНИЦАЕМОСТИ ПОРИСТЫХ МАТЕРИАЛОВ ОТ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ВНУТРЕННЕЙ ПОВЕРХНОСТИ НАНОПОР

Э.Г. Никонов, М. Поповичова, О.К. Никонова

¹Объединенный институт ядерных исследований, Дубна, Российская Федерация

Одной из самых важных характеристик пористого вещества является проницаемость по отношению к газам и жидкостям. В зависимости от значений величины проницаемости пористое вещество по-разному может взаимодействовать с протекающими через это вещество газами и жидкостями. Исследование зависимости диффузионных характеристик пористых материалов от длины и кривизны поверхности поры является одной из актуальных исследовательских задач, успешное решение которых может привести к улучшению понимания процессов массопереноса, происходящих в пористых системах в различных областях науки и технологий. В данной работе проведено исследование зависимости коэффициента диффузии и проницаемости флюида в нанопоре от кривизны поверхности поры и характеристик процесса взаимодействия частиц флюида со стенками поры в рамках модели простой жидкости.

Потенциалы взаимодействия

Для моделирования процессов взаимодействия молекул водяного пара между собой внутри и вне поры использовался потенциал **Леннарда-Джонса** с постоянными $\varepsilon = 6.74 \cdot 10^{-3}$ эВ и $\sigma = 3.17$ Å. Взаимодействие молекул воды со стенками поры (диоксид кремния) моделируется также с использованием потенциала Леннарда-Джонса, но с параметрами $\sigma_{wf} = 0.37$ нм и $\varepsilon_{wf} = 3.73 \cdot 10^{-3}$ эВ, полученными для учета взаимодействия молекул газа с молекулами стенки с использованием процедуры Лоренца-Бертло.

Граничные условия

При моделировании методом классической МД использовались следующие граничные условия. Границы поры Г₂ и Г₄ являются абсолютно непрозрачными для молекул воды. Границы Г₁ и Г₃ абсолютно прозрачны для молекул воды.

Начальные условия

Моделирование проводилось при температуре окружающей среды слева и справа от поры T = 35°С и следующих значениях давления и концентрации на открытых концах поры. Слева от поры (Рис. 1) находится 100% насыщенный пар при атмосферном давлении, т. е. давление насыщенного пара и концентрация будут соответственно равны $p_L = 5.622 \text{ кПа}$ и $\rho_L = 0.03962 \text{ кг/м}^3$. Справа от поры (Рис. 1) находится 20% насыщенный водяной пар при атмосферном давлении с соответствующими значениями давления насыщенного пара и концентрации давления насыщенного пара и концентрации $p_R = 1.124 \text{ кПа}$ и $\rho_R = 7.9 \cdot 10^{-3} \text{ кг/м}^3$. В начальный момент времени давление и концентрация на левом и правом конце поры равны p_L , ρ_L и p_R , ρ_R соответственно. Внутри поры водяной пар находится в состоянии термодинамического равновесия. То есть оба конца поры не изолированы от внешней среды. В этом случае давление вдоль оси *z* зависит линейно от *z*.

Термостаты

Для контроля температуры моделируемой системы использовался термостат **Берендсена**. Термостат Берендсена реализуется в уравнениях движения путем включения в результирующую силу дополнительного переменного нелинейного трения.

Для моделирования учета взаимодействия молекул воды со стенками поры вплоть до конденсации воды на стенках использовался термостат **Андерсена.** Термостат Андерсена действует на молекулы воды в тонком слое толщиной ∆г около стенки поры (Рис.1).

$$p(z) = \left(5.62 - \frac{4.5}{L}z\right), 0 \le z \le L.$$

Интегрирование уравнение движения

Численное интегрирование уравнений Ньютона проводилось скоростным методом Верле для $5 \cdot 10^3$ шагов по времени с величиной временного шага $\Delta t = 8$ фс, что соответствует интервалу 40 пс.

Параметр *τ*_Bтермостата Берендсена принимался равным *τ*_B = 0.08 пс. Параметр *ν* термостата Андерсена принимался равным единице. Взаимодействие со стенкой поры учитывалось для частиц, попавших при движении в поре в слой толщиной Δ*r* = 0.025*d* вблизи стенки поры.

Результаты моделирования

Эволюция коэффициента проницаемости К[нм] по времени в зависимости от количества «волн» искривленной границы поры при

различных значениях амплитуды *A*. Искривленность границы поры моделируется функцией $w(z) = A \cdot Sin(z)$. Амплитуда A = 0, 1, 2, 3, 4 в приведенных единицах. A = 0 соответствует прямолинейным границам Γ_2 и Γ_4 поры.

Рис.2. Эволюция коэффициента проницаемости *К*[нм] по времени в зависимости от амплитуды для пяти волн. Рис.3. Эволюция коэффициента диффузии *D*[нм/пс] по времени в зависимости от амплитуды для пяти волн.

Заключение

Анализ результатов моделирования позволяет сделать следующие выводы. При увеличении количества «волн», т.е. при увеличении степени нелинейности границ поры, при фиксированной амплитуде, которая может характеризовать глубину нелинейности границ, коэффициент проницаемости К поры для молекул водяного пара растет. Аналогичный рост наблюдается и при увеличении амплитуды при фиксированном значении «волн» (Рис.2). При этом во всех перечисленных случаях проницаемость поры с течением Для коэффициента диффузии уменьшается. времени D наблюдается иная картина (Рис. 3). Для фиксированного значения «волн», в данном случае пяти «волн» на каждой границе поры, при определенном значении амплитуды, начиная с амплитуды А=3, коэффициент диффузии может с течением времени возрастать.