СОЗДАНИЕ НАНОФАЗ НА ПОВЕРХНОСТИ SiO₂ ПРИ БОМБАРДИРОВКЕ ИОНАМИ Ar⁺

Д.А. Ташмухамедова, Б.Е. Умирзаков, Ё.С. Эргашов, М.А. Миржалилова, А.Н. Уроков, Ж.У. Усманов Tashkent State Technical University, 100095, st. University, 2, Tashkent, Uzbekistan, *ftmet@rambler.ru*

ВВЕДЕНИЕ

В настоящее время наноразмерные структуры и слои на основе Si, Ge и их оксидов имеют перспективы при создании приборов нано- и оптоэлектроники. В частности, гетероструктуры SiO₂/Si с различными нановключениями служат основой при разработке новых видов высокочастотных транзисторов, интегральных схем, оптических преобразователей и солнечных элементов.

Нанокластеры Si в матрице оксидов кремния в основном получают методами термического испарения, лазерной абляции, химического осаждения из газовой фазы. Во всех случаях для того, чтобы осуществлять пассивацию оборванных поверхностных связей, в случае аморфных нанокластерных фаз требуется проведение последующего отжига до Т = 623 К в кислородсодержащей атмосфере. Для получения нанокристаллических фаз кремния (nc -Si) пленка α-SiO₂:H отжигается при температуре Т = 1273 К. При этом внутри кристаллизованной пленки формируются с -SiO₂ и nc -Si. Свойства аморфных и кристаллических наночастиц Si существенно отличаются друг от друга. Технология получения и свойства этих наночастиц более

Для определения профиля распределения атомов по глубине проводился послойный оже-анализ путем распыления поверхности образца ионами Ar^+ с $E_0 = 1$ keV при угле падения ~ 80 – 85° относительно нормали со скоростью (3 ± 1) Å/min. Погрешность измерений при определении концентрации атомов составляла 5 – 8 at.%. Степень разложения SiO₂ на составляющие (кремний и кислород) в процессе бомбардировки ионами Ar^+ оценивалась по изменению формы, интенсивности и энергетического положения оже-пика $L_{23}VV$ (E = 92 eV) Si, а концентрация чистого Si определялась по изменению интенсивности как низкоэнергетического (92 eV) пика, так и высокоэнергетического пика LMM (E = 1619 eV) Si.

На рис. 1 приведено изменение поверхностной концентрации атомов кремния C_{Si} образующихся на поверхности SiO₂/Si при бомбардировке ионами Ar⁺ разными энергиями при дозе $D_{Hac} = D = 10^{17}$ cm⁻². После каждого цикла ионной бомбардировки проводился

Из кривой 1 видно, что при D = 0 значение I_{omh} = 1 и она в исследуемой области энергии фотонов (hv = 0.8 – 2.2 eV) заметно не меняется. После бомбардировки ионами Ar⁺ с дозой 10¹⁵ cm⁻² значения I_{omh} начиная с hv = 1.8 eV резко уменьшаются на ~ 0.30 – 0.35, т.е. 30 – 35 % падающего света поглощаются нанокристаллическими фазами Si, следовательно степень покрытия θ приповерхностного слоя SiO₂ нанокристаллами Si составляет 30 – 35 %.

подробно рассмотрены в обзоре.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для создания наноразмерных структур на поверхности полупроводников и диэлектрических пленок часто используется метод ионной бомбардировки.

В впервые на поверхности пленок SiO₂/Si получены нанофазы и нанопленки Si при бомбардировке ионами Ar⁺ с энергиями $E_0 = 0.5 - 5$ keV в сочетании с отжигом. Оценены размеры и толщина наноструктур Si. Их толщина при $E_0 = 1$ keV составляла ~ 25–30. Однако до сих пор практически не исследовано влияние прогрев при T = 800 К в течении 30 min. Концентрация Si определялась по изменению интенсивности $L_{23}VV$ оже-пика кремния.

На рис. 2 приведен концентрационный профиль распределения атомов Si по глубине для системы SiO₂/Si бомбардированного ионами Ar⁺ с $E_0 = 15$ keV при D = $2 \cdot 10^{17}$ cm⁻². Измерение проводилось после прогрева при T = 800 К. Видно, что в приповерхностном слое SiO₂ на глубине ~ 18 nm образуется слой Si толщиной 8 – 10 nm.

*Рис. 1. Зависимость поверхностной концентрации атомов Si от энергии ионов для SiO*₂, бомбардированного ионами Ar⁺.

В целом формируется нанопленочная система SiO₂ – $Si - SiO_2$. На границах $SiO_2 - Si$ и $Si - SiO_2$ формируются переходные слои толщиной ~ 5-6 nm. Средняя глубина d_{cp} образования кремниевых слоев зависит от энергии ионов: при $E_0 = 10$ keV $d_{cp} = \sim 15$ nm, при $E_0 = 15$ keV – 19 nm, a при $E_0 = 25 \text{ keV } d_{cp} = 25 \text{ nm}$. При увеличении E_0 от 10 до 25 keV толщина слоя Si существенно не меняется и составляет 8 – 10 nm. На рис. 3 приведены зависимости интенсивности проходящего света I_{omh} от энергии фотонов для SiO₂ (111) бомбардированного ионами Ar^+ с $E_0 = 15$ keV при дозах 0 (чистый SiO₂), 10¹⁵, 10¹⁶ и 2·10¹⁷ ст⁻². После каждого цикла ионной имплантации проводился отжиг при Т = 800 – 850 К в течение 30 min. Где $I_{oth} = I_6 / I_{SiO}$; I_{SiO} и *I*_б интенсивности проходящего света через чис²тый и ионнобомбардированный SiO₂, соответственно.

Рис. 3. Зависимость интенсивности проходящего света от энергии фотонов для SiO₂, бомбардированного ионами Ar⁺ c E₀ = 15 кэВ, при дозах D, см⁻²: 1 – 0; 2 – 10¹⁵, 3 – 10¹⁶; 4 – 2·10¹⁷. На вставке приведена ДБЭ-картина поверхности для образца бомбардированного при D = 2·10¹⁷ см⁻².

ЗАКЛЮЧЕНИЕ

В данной работе методом ионной бомбардировки в сочетании с отжигом впервые получены нанофазы и слои Si на различных глубинах приповерхностного слоя аморфных пленок и монокристаллических образцов SiO₂. В частности установлено, что при $E_0 \le 9$ keV нанослои Si формируются на поверхности SiO₂ и вблизи неё, а при E₀ > 9 - 10 keV в приповерхностном слое. Оценены их толщина, глубина образования и определена ширина запрещенной зоны. Установлено, что при увеличении энергии ионов от 10 до 25 keV толщина слоя Si существенно не меняется и составляет 8 – 10 nm, а средняя глубина образования нанофаз Si изменяется от 15 до 25 nm. В случае монокристаллического SiO₂ после ионный имплантации и отжига формируется монокристаллические слои кремния. Показано, что в нанокристаллических фазах Si сформированных при дозах $D \le 10^{16} \text{ cm}^{-2}$ проявляются квантово-размерные эффекты.

бомбардировки ионами Ar^+ с энергиями $E_0 \ge 10$ keV на состав и структуру приповерхностных слоев пленок SiO₂. Настоящая работа посвящена получению наноразмерных фаз и слоев Si на различных глубинах пленки SiO₂ путем бомбардировки ионами Ar^+ , а также определению их состава, размеров, структуры и ширины запрещенной зоны.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве объектов исследования были выбраны аморфные пленки SiO₂ /Si толщиной ~ 50 nm, полученные методом термического окисления, и монокристаллические образцы SiO₂ (α -кварц) толщиной 0.2–0.3 mm. Ионная бомбардировка и все исследования проводились при вакууме не хуже 10^{-7} Pa. Энергия ионов варьировалась в пределах от 1 до 25 keV, а доза их облучения - от 5 \cdot 10^{14} до 5 \cdot 10^{17} cm⁻². Для создания наноструктур Si в случае пленок SiO₂ ионы Ar⁺ направлялись к поверхности перпендикулярно, а в случае монокристаллов SiO₂ - под углом 3–4° относительно нормали, чтобы избежать каналирования ионов.

Рис. 2. Концентрационный профиль распределения атомов Si по глубине SiO₂/Si (111) бомбардированного ионами Ar⁺ c E_0 =15 кэВ при D = 2·10¹⁷ см⁻², измеренные после прогрева при T = 800 К в течении 30 мин.

ЛИТЕРАТУРА

- Юсупжанова М.Б., Ташмухамедова Д.А., Умирзаков Б.Е. // ЖТФ. 2016. Т. 86. Вып. 4. С. 148 – 150. <u>ttp://journals.ioffe.ru/articles/42980</u>
- Умирзаков Б.Е., Ташмухамедова Д.А., Аллаярова Г.Х., Содикжанов Ж.Ш. // Письма в ЖТФ. 2019. Т. 45. Вып. 7. С. 49 – 51. DOI: <u>10.21883/PJTF.2019.07.47539.17650</u>
- 3. Болтаев Х.Х., Ташмухамедова Д.А., Умирзаков Б.Е. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2014, № 4, с. 24. DOI: 10.7868/S0207352814010107
- Lo Savio R., Repetto L., Guida P., <u>Angeli E., Firpo</u> G., <u>Volpe</u> A., <u>Ierardi</u> V., <u>Valbusa</u> U. // Solid State Commun. 2016. V. 240. P. 41 – 45. <u>https://doi.org/10.1016/j.ssc.2016.04.023</u>
- Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 4. С. 38. DOI: 10.7868/S0207352815040083
- Эргашов Ё.С., Ташмухамедова Д.А., Умирзаков Б.Е. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2017, № 4, с. 104. DOI: 10.7868/S0207352817040084

