СОЗДАНИЕ НАНОФАЗ НА ПОВЕРХНОСТИ SiO₂ ПРИ БОМБАРДИРОВКЕ ИОНАМИ Ar⁺

Д.А. Ташмухамедова, Б.Е. Умирзаков, Ё.С. Эргашов, М.А. Миржалилова, А.Н. Уроков, Ж.У. Усманов Tashkent State Technical University, 100095, st. University, 2, Tashkent, Uzbekistan, ftmet@rambler.ru

ВВЕДЕНИЕ

В настоящее время наноразмерные структуры и слои на основе Si, Ge и их оксидов имеют перспективы при создании приборов нано- и оптоэлектроники. В частности, гетероструктуры SiO₂/Si с различными нановключениями служат основой при разработке новых видов высокочастотных транзисторов, интегральных схем, оптических преобразователей и солнечных элементов.

Нанокластеры Si в матрице оксидов кремния в основном получают методами термического испарения, лазерной абляции, химического осаждения из газовой фазы. Во всех случаях для того, чтобы осуществлять пассивацию оборванных поверхностных связей, в случае аморфных нанокластерных фаз требуется проведение последующего отжига до T=623~K в кислородсодержащей атмосфере. Для получения нанокристаллических фаз кремния (nc -Si) пленка α -SiO2:H

отжигается при температуре T=1273~K. При этом внутри кристаллизованной пленки формируются с - SiO_2 и nc -Si. Свойства аморфных и кристаллических наночастиц Si существенно отличаются друг от друга. Технология получения и свойства этих наночастиц более

подробно рассмотрены в обзоре.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для создания наноразмерных структур на поверхности полупроводников и диэлектрических пленок часто используется метод ионной бомбардировки.

В впервые на поверхности пленок SiO_2/Si получены нанофазы и нанопленки Si при бомбардировке ионами Ar^+ с энергиями $E_0=0$. 5-5 keV в сочетании с отжигом. Оценены размеры и толщина наноструктур Si. Их толщина при $E_0=1$ keV составляла $\sim 25-30$. Однако до сих пор практически не исследовано влияние бомбардировки ионами Ar^+ с энергиями $E_0 \geq 10$ keV на состав и структуру приповерхностных слоев пленок SiO_2 . Настоящая работа посвящена получению наноразмерных фаз и слоев Si на различных глубинах пленки SiO_2 путем бомбардировки ионами Ar^+ , а также определению их состава, размеров, структуры и ширины запрещенной зоны.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве объектов исследования были выбраны аморфные пленки SiO_2 /Si толщиной ~ 50 nm, полученные методом термического окисления, и монокристаллические образцы SiO_2 (α -кварц) толщиной 0.2–0.3 mm. Ионная бомбардировка и все исследования проводились при вакууме не хуже 10^{-7} Pa. Энергия ионов варьировалась в пределах от 1 до 25 keV, а доза их облучения - от $5 \cdot 10^{14}$ до $5 \cdot 10^{17}$ cm⁻² . Для создания наноструктур Si в случае пленок SiO_2 ионы Ar^+ направлялись к поверхности перпендикулярно, а в случае монокристаллов SiO_2 - под углом 3–4° относительно нормали, чтобы избежать каналирования ионов.

Для определения профиля распределения атомов по глубине проводился послойный оже-анализ путем распыления поверхности образца ионами Ar^+ с $E_0=1~keV$ при угле падения $\sim 80-85^\circ$ относительно нормали со скоростью (3 ± 1) Å/min. Погрешность измерений при определении концентрации атомов составляла 5-8 at.%. Степень разложения SiO_2 на составляющие (кремний и кислород) в процессе бомбардировки ионами Ar^+ оценивалась по изменению формы, интенсивности и энергетического положения оже-пика $L_{23}VV$ (E=92~eV) Si, а концентрация чистого Si определялась по изменению интенсивности как низкоэнергетического (92~eV) пика, так и высокоэнергетического пика LMM (E=1619~eV) Si.

На рис. 1 приведено изменение поверхностной концентрации атомов кремния C_{Si} образующихся на поверхности SiO_2/Si при бомбардировке ионами Ar^+ разными энергиями при дозе $D_{\text{нас}} = D = 10^{17} \text{ cm}^{-2}$. После каждого цикла ионной бомбардировки проводился прогрев при T = 800 K в течении 30 min. Концентрация Si определялась по изменению интенсивности $L_{23}VV$ ожепика кремния.

На рис. 2 приведен концентрационный профиль распределения атомов Si по глубине для системы SiO_2/Si бомбардированного ионами Ar^+ с $E_0 = 15$ keV при $D = 2 \cdot 10^{17}$ cm⁻². Измерение проводилось после прогрева при T = 800 K. Видно, что в приповерхностном слое SiO_2 на глубине ~ 18 nm образуется слой Si толщиной 8-10 nm.

Рис. 1. Зависимость поверхностной концентрации атомов Si от энергии ионов для SiO_2 , бомбардированного ионами Ar^+ .

В целом формируется нанопленочная система SiO_2 — $Si - SiO_2$. На границах SiO_2 — Si и $Si - SiO_2$ формируются переходные слои толщиной ~ 5-6 nm. Средняя глубина d_{cp} образования кремниевых слоев зависит от энергии ионов: при $E_0 = 10$ keV $d_{cp} = \sim 15$ nm, при $E_0 = 15$ keV — 19 nm, а при $E_0 = 25$ keV $d_{cp} = 25$ nm. При увеличении e_0 от e_0 от

На рис. З приведены зависимости интенсивности проходящего света I_{omh} от энергии фотонов для SiO_2 (111) бомбардированного ионами Ar^+ с $\mathrm{E}_0=15$ keV при дозах 0 (чистый SiO_2), 10^{15} , 10^{16} и $2\cdot10^{17}$ сm⁻². После каждого цикла ионной имплантации проводился отжиг при $\mathrm{T}=800-850$ К в течение 30 min. Где $\mathrm{I}_{\mathrm{OTH}}=\mathrm{I}_{\mathrm{6}}/\mathrm{I}_{\mathrm{SiO}}$; $\mathrm{I}_{\mathrm{SiO}}$ и I_{6} интенсивности проходящего света через чистый и ионнобомбардированный SiO_2 , соответственно.

Рис. 2. Концентрационный профиль распределения атомов Si по глубине SiO₂/Si (111) бомбардированного ионами Ar^+ с E_0 =15 кэВ при $D = 2 \cdot 10^{17}$ см⁻², измеренные после прогрева при T = 800 К в течении 30 мин.

Из кривой 1 видно, что при D=0 значение $I_{omh}=1$ и она в исследуемой области энергии фотонов (hv=0.8-2.2~eV) заметно не меняется. После бомбардировки ионами Ar^+ с дозой $10^{15}~cm^{-2}$ значения I_{omh} начиная с hv=1.8~eV резко уменьшаются на $\sim 0.30-0.35$, т.е. 30-35~% падающего света поглощаются нанокристаллическими фазами Si, следовательно степень покрытия θ приповерхностного слоя SiO_2 нанокристаллами Si составляет 30-35~%.

Рис. 3. Зависимость интенсивности проходящего света от энергии фотонов для SiO_2 , бомбардированного ионами Ar^+ с $E_0=15$ кэB, при дозах D, см $^{-2}$: 1-0; $2-10^{15}$, $3-10^{16}$; $4-2\cdot10^{17}$. На вставке приведена ДБЭ-картина поверхности для образца бомбардированного при $D=2\cdot10^{17}$ см $^{-2}$.

ЗАКЛЮЧЕНИЕ

В данной работе методом ионной бомбардировки в сочетании с отжигом впервые получены нанофазы и слои Si на различных глубинах приповерхностного слоя аморфных пленок и монокристаллических образцов SiO₂. В частности установлено, что при $E_0 \le 9$ keV нанослои Si формируются на поверхности SiO_2 и вблизи неё, а при E_0 > 9 - 10 keV в приповерхностном слое. Оценены их толщина, глубина образования и определена ширина запрещенной зоны. Установлено, что при увеличении энергии ионов от 10 до 25 keV толщина слоя Si существенно не меняется и составляет 8 - 10 nm, а средняя глубина образования нанофаз Si изменяется от 15 до 25 nm. В случае монокристаллического SiO₂ после ионный имплантации и отжига формируется монокристаллические слои кремния. Показано, что в нанокристаллических фазах Si сформированных при дозах $D \le 10^{16} \ cm^{-2}$ проявляются квантово-размерные эффекты.

ЛИТЕРАТУРА

- НОсупжанова М.Б., Ташмухамедова Д.А., Умирзаков Б.Е.
 // ЖТФ. 2016. Т. 86. Вып. 4. С. 148 150.
 ttp://journals.ioffe.ru/articles/42980
- 2. Умирзаков Б.Е., Ташмухамедова Д.А., Аллаярова Г.Х., Содикжанов Ж.Ш. // Письма в ЖТФ. 2019. Т. 45. Вып. 7. С. 49 51. DOI: 10.21883/PJTF.2019.07.47539.17650
- 3. Болтаев Х.Х., Ташмухамедова Д.А., Умирзаков Б.Е. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2014, № 4, с. 24. DOI: 10.7868/S0207352814010107
- 4. Lo Savio R., Repetto L., Guida P., <u>Angeli E., Firpo</u> G., <u>Volpe</u> A., <u>Ierardi</u> V., <u>Valbusa</u> U. // Solid State Commun. 2016. V. 240. P. 41 45. https://doi.org/10.1016/j.ssc.2016.04.023
- 5. Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 4. С. 38. DOI: 10.7868/S0207352815040083
- 6. Эргашов Ё.С., Ташмухамедова Д.А., Умирзаков Б.Е. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2017, № 4, с. 104. DOI: 10.7868/S0207352817040084