ПАРАМЕТРИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ В НАНО ПОРОШКОВЫХ МИШЕНЯХ

В. И. Алексеев¹, А. Н. Елисеев¹, Е. Киданова², И.А. Кищин^{1),2,*}, А. С. Кубанкин^{1),2}, А. С. Клюев^{1),2}, Р.М. Нажмудинов^{1),2} 1) Физический институт им. П.Н. Лебедева РАН, Москва, Россия ²⁾ Белгородский государственный национальный исследовательский университет, Белгород, Россия

*) e-mail:ivan.kishin@mail.ru

В работе представлено продолжение исследований параметрического рентгеновского излучения (ПРИ) релятивистских электронов в порошковых мишенях. Впервые ПРИ в порошковых мишенях было исследовано в работах [1,2], но в качестве исследований был выбран вольфрамовый порошок с размером зерен около одного мкм. В данной работе представлены продолжения исследования ПРИ, образующегося в порошковых мишенях с размерами зерен менее 100 нм.

В качестве источника релятивистских электронов использовался микротрон с энергией 7 МэВ. Мишени были изготовлены из платинового порошка, порошка оксида магния, и никеля. Спектры ПРИ наблюдались под углами 150° и 180° относительно скорости движения электронов. Поверхность мишени была ориентирована перпендикулярно оси пучка. В ходе эксперимента наблюдались рефлексы ПРИ в области энергий от 2 до 8 кэВ. Проведено сравнения экспериментальных данных с кинематической теорией ПРИ [3].

Установка «Рентген 1»: 1 - микротрон, 2, 3, 4 - поворотный магнит, 5 мишенная камера, 6 - квадрупольные линзы, 7 - Ү-корректор, 8 коллиматоры 3 мм, 9 - детекторы, 10 - свинцовый экран, 11 пропорциональная камера, 12 - задвижка, 13 - цилиндр Фарадея, 14 – гониометр для передвижения мишени, 15 - магнитный фильтр.

Основные характеристики микротрона:

- энергия ускоренных электронов 7 МэВ; - частота следования импульсов 50 Гц;
- длительность импульса до 4 мкс;
- импульсный ток 40 мА;
- начальное расхождение 3 мрад в целевой позиции
- диаметр пучка электронов 5 мм.

Параметры детектора X123-SDD:

Размер кристалла (Si) — 25 мм2 × 500 мкм, толщина входного окна (Ве) — 12.5 мкм, разрешение (в области 5.9 кэВ) — 126 эВ при времени формирования 1 мкс, максимальная скорость счета — до 2×106 с-1

Фотография камеры для размещения мишени: мишенная камера (1), мишень (2) трехосевой гониометр (3), линейный транслятор (4) для перемещения цилиндра Фарадея (5).

Фотография установки «Рентген 1»: А и Б фотонные каналы, М – мишенная камера, ПК – пропорциональная камера

6.375

6.375

эффективность (в области 2-10 кэВ) -70-100

Плоскость	Угол	Угол
	наблюдения	наблюдения
	150°, кэВ	180°, кэВ
(1 1 1)	3,155	3,047

Плоскость	Угол	Угол
	наблюдения	наблюдения
	150°, кэВ	180°, кэВ
(111)	2,836	2,739

Плоскость	Угол	Угол
	наблюдения	наблюдения
	150°, кэВ	180°, кэВ
(111)	2,639	2,549

(200)	3,643	3,518
(2 2 0)	5,151	4,976
(3 1 1)	6,041	5,835
(2 2 2)	6,309	6,094
(4 0 0)	7,285	7,037
(3 3 1)	7,939	7,668

(200)	3,274	3,163
(2 2 0)	4,631	4,473
(3 1 1)	5,430	5,245
(2 2 2)	5,671	5,478
(4 0 0)	6,549	6,326
(3 3 1)	7,136	6,893

(200)	3,047	2,944
(2 2 0)	4,310	4,163
(3 1 1)	5,054	4,881
(2 2 2)	5,278	5,098
(4 0 0)	6,095	5,887
(3 3 1)	6,814	6,415

Таблица 3. Расчетные значения энергий Брэгга для оксида магния тип кристаллической решетки ГЦК, а = 4,212 нм

Таблица 1. Расчетные значения энергий Брэгга для никеля, тип кристаллической решетки ГЦК, а = 3,5238 нм

Таблица 2. Расчетные значения энергий Брэгга для платины, тип кристаллической решетки ГЦК, а = 3,92 нм

Выводы

1. Впервые измерены спектры ПРИ образующегося в нанопорошковых мишенях.

2. Получено хорошее согласие кинематической теории ПРИ [3] и экспериментальных данных для порошков никеля и платины по форме, положению и относительной интенсивности.

3. Полученное плохое соотношения теории ПРИ [3] и экспериментальных данных для оксида магния, можно объяснить деформацией мишени, во время эксперимента.

Литература

[1] V.I. Alekseev, et al. // Physics Letters A, 383(8), p. 770–773 (2019)

- [2] V.I. Alekseev, et al. // Journal of Instrumentation, 15(3), C03009, (2020)
- [3] V. Astapenko et al. // J. Phys. B: At. Mol. Opt. Phys. 40, p. 1337–1346 (2007)